
A Discipline of Dynamic Programming over

Sequence Data

Robert Giegerich, Carsten Meyer, Peter Steffen

Faculty of Technology, Bielefeld University
Postfach 10 01 31

33501 Bielefeld, Germany
{robert,cmeyer,psteffen}@techfak.uni-bielefeld.de

Abstract. Dynamic programming is a classical programming technique,
applicable in a wide variety of domains such as stochastic systems anal-
ysis, operations research, combinatorics of discrete structures, flow prob-
lems, parsing of ambiguous languages, and biosequence analysis. Little
methodology has hitherto been available to guide the design of such al-
gorithms. The matrix recurrences that typically describe a dynamic pro-
gramming algorithm are difficult to construct, error-prone to implement,
and, in nontrivial applications, almost impossible to debug completely.
This article introduces a discipline designed to alleviate this problem.
We describe an algebraic style of dynamic programming over sequence
data. We define its formal framework, based on a combination of gram-
mars and algebras, and including a formalization of Bellman’s Principle.
We suggest a language used for algorithm design on a convenient level
of abstraction. We outline three ways of implementing this language, in-
cluding an embedding in a lazy functional language. The workings of the
new method are illustrated by a series of examples drawn from diverse
areas of computer science.

1 Power and scope of dynamic programming

1.1 Dynamic programming: a method “by example”

Computer science knows a handful of programming methods that are useful
across many domains of application. Such methods are, for example, Structural
Recursion, Divide-and-Conquer, Greedy Algorithms and Genetic Algorithms.
Dynamic Programming (DP) is another classical programming method, intro-
duced even before the term Computer Science was firmly established. When
applicable, DP often allows one to solve combinatorial optimization problems
over a search space of exponential size in polynomial space and time. Bellman’s
“Principle of Optimality” [Bel57] belongs to the core knowledge of every com-
puter science graduate. Significant work has gone into formally characterizing
this principle [Sni92,Mor82,Mit64], formulating DP in different programming
paradigms [Moo99,Cur97] and studying its relation to other general program-
ming methods such as greedy algorithms [BM93].

2 Robert Giegerich, Carsten Meyer, Peter Steffen

The scope of DP is enormous. Much of the early work was done in the area
of physical state transition systems and operations research [BD62]. Other, sim-
pler examples (more suited for computer science textbooks) are optimal matrix
chain multiplication, polygon triangulation, or string comparison. The analysis
of molecular sequence data has fostered increased interest in DP. Protein homol-
ogy search, RNA structure prediction, gene finding, and interpretation of mass
spectrometry data pose combinatorial optimization problems unprecedented in
variety and data volume. A recent textbook in biosequence analysis [DEKM98]
lists 11 applications of DP in its introductory chapter, and many more in the
sequel.

Developing a DP algorithm for an optimization problem over a nontrivial do-
main has intrinsic difficulties. The choice of objective function and search space
are interdependent, and inextricably linked to questions of efficiency. Once com-
pleted, all DP algorithms are expressed via recurrence relations between tables
holding intermediate results. These recurrences provide a very low level of ab-
straction, and subscript errors are a major nuisance even in published articles.
The recurrences are difficult to explain, painful to implement, and almost im-
possible to debug: A subtle error gives rise to a suboptimal solution every now
and then, which is virtually undetectable by human inspection.

In this situation it is remarkable that neither the literature cited above, nor
many other computer science textbooks ([Gus97,Meh84,BB88,AHU83,Sed89], to
name but a few) provide guidance in the development of DP algorithms. It ap-
pears that giving some examples and an informal discussion of Bellman’s Princi-
ple is all the methodology we can offer to our students and practitioners. Notable
exceptions are the textbooks by Cormen et al. and Schöning [CLR90,Sch01],
which recognize this deficiency and formulate guiding rules on how to approach
a new DP problem. We shall critically review these rules in our conclusion sec-
tion. This state of the art is nicely summarized in a quote from an (anonymous)
referee commenting on an initial version of this work, who wrote: “The develop-
ment of successful dynamic programming recurrences is a matter of experience,
talent, and luck.”

1.2 Basic ideas of Algebraic Dynamic Programming

Algebraic dynamic programming (ADP) is a new style of dynamic programming
that gives rise to a systematic approach to the development of DP algorithms.
It allows one to design, reflect upon, tune and even test DP algorithms on a
more abstract level than the recurrences that used to be all that was available to
deal with dynamic programming algorithms. Four steps based on mathematical
concepts guide the algorithm design. Many tricks that have been invented by
practitioners of DP can be expressed as general techniques in ADP. The common
aspects of related algorithms can be cleanly separated from their differences. On
the implementation side, ADP exactly reproduces the classical DP recurrences.
In principle1, nothing is lost in terms of efficiency. All this together makes us
1 Asymptotic efficiency is preserved, while the constant factors depend on the mode

of implementation, discussed in Chapter 5.

A Discipline of Dynamic Programming over Sequence Data 3

feel that Dynamic Programming is more and more becoming a discipline, rather
than a “matter of experience, talent and luck”. How can this be achieved?

Any DP algorithm evaluates a search space of candidate solutions under a
scoring scheme and an objective function. The classical DP recurrences reflect
the four aspects of search space construction, scoring, choice, and efficiency in
an indiscriminate fashion. In any systematic approach, these concerns must be
separated. The algebraic approach to be presented here proceeds as follows:

The search space of the problem at hand is described by a yield grammar,
which is a tree grammar generating a string language. The ADP developer takes
the view that for a given input sequence, “first” the search space is constructed,
leading to an enumeration of all candidate solutions. This is a parsing problem,
solved by a standard device called a tabulating yield parser. The developer can
concentrate on the design of the grammar.

Evaluation and choice are captured by an evaluation algebra. It is important
(and in contrast to traditional presentations of DP algorithms) that this algebra
comprises all aspects relevant to the intended objective of optimization, but is
independent of the description of the search space. The ADP developer takes
the view that a “second” phase evaluates the candidates enumerated by the first
phase, and makes choices according to the optimality criterion.

Of course, the interleaving of search space construction and evaluation is
essential to prevent combinatorial explosion. This interleaving is contributed by
the ADP method in a way transparent to the developer.

By the separate description of search space and evaluation, ADP produces
modular and therefore re-usable algorithm components. Often, related optimiza-
tion problems over the same search space can be solved merely by a change of
the algebra. More complex problems can be approached with a better chance of
success, and there is no loss of efficiency compared to ad-hoc approaches. Avoid-
ing the formulation of explicit recurrences is a major relief, an effect captured by
early practitioners of ADP in the slogan “No subscripts, no errors!”. We hope
that the application examples presented in this article will convince the reader
that following the guidance of ADP in fact brings about a boost in programming
productivity and program reliability.

The ADP approach has emerged recently in the context of biosequence anal-
ysis, where new dynamic programming problems arise almost daily. In spite of
its origin in this application domain, ADP is relevant to dynamic programming
over sequential data in general. “Sequential data” does not mean we only study
string problems – a chain of matrices to be multiplied, for example, is sequential
input data in our sense, as well as the peak profiles provided by mass spec-
trometry. An informal introduction to ADP, written towards the needs of the
bioinformatics community, has appeared in [Gie00a]. The present article gives
a complete account of the foundations of the ADP method, and shows its ap-
plication to several classical combinatorial optimization problems in computer
science.

Like any methodological work, this article suffers from the dilemma that
for the sake of exposition, the problems treated here have to be rather simple,

4 Robert Giegerich, Carsten Meyer, Peter Steffen

such that the impression may arise that methodological guidance is not really
required. The ADP method has been applied to several nontrivial problems in
the field of biosequence analysis. An early application is a program for aligning
recombinant DNA [GKW99], when the ADP theory was just about to emerge.
Two recent applications are searching for sequence/structure motifs in DNA or
RNA [MG02], and the problem of folding saturated RNA secondary structures,
posed by Zuker and Sankoff in [ZS84] and solved in [EG01]. We shall give a short
account of such “real world” applications.

1.3 Overview of this article

In Section 2 we shall review some new and some well known applications of
dynamic programming over sequence data, in the form in which they are tradi-
tionally presented. This provides a common basis for the subsequent discussion.
By the choice of examples, we illustrate the scope of dynamic programming to a
certain extent. In particular, we show that (single) sequence analysis and (pair-
wise) sequence comparison are essentially the same kind of problem when viewed
on a more abstract level. The applications studied here will later be reformulated
in the spirit and notation of ADP.

In Section 3 we introduce the formal basis of the ADP method: Yield gram-
mars and evaluation algebras. We shall argue that these two concepts precisely
catch the essence of dynamic programming, at least when applied to sequence
data. Furthermore, we introduce a special notation for expressing ADP algo-
rithms. Using this notation an algorithm is completely described on a very ab-
stract level, and can be designed and analyzed irrespective of how it is eventually
implemented. We discuss efficiency analysis and point to other work concerning
techniques to improve efficiency.

In Section 4 we formulate the ADP development method and develop yield
grammars and evaluation algebras for the applications described in Section 2.
Moreover we show how solutions to problem variants can be expressed transpar-
ently using the ADP approach.

Section 5 indicates three ways of actually implementing an algorithm once it
is written in ADP notation: The first alternative is a direct embedding and exe-
cution in a functional programming language, the second is manual translation
to the abstraction level of an imperative programming language. The third al-
ternative, still under development, is the use of a system which directly compiles
ADP notation into C code.

In the conclusion, we discuss the merits of the method presented here, eval-
uate its scope, and glance at its possible extensions.

This article may be read in several different ways. Readers familiar with stan-
dard examples of dynamic programming may jump right away to the theory in
Section 3. Readers mainly interested in methodology, willing to take for granted
that ADP can be implemented without loss of efficiency, may completely skip
Section 5.

A Discipline of Dynamic Programming over Sequence Data 5

2 Dynamic programming in traditional style

In this section we discuss four introductory examples of dynamic programming,
solved by recurrences in the traditional style. Three will be reformulated in
algebraic style in Section 4. We begin our series of examples with an algorithmic
fable.

2.1 The oldest DP problem in the world

Our first example dates back to the time at around 800. Al Chwarizmi, to-
day known for his numerous important discoveries in elementary arithmetic and
dubbed as the father of algorithmics, was a scholar at the House of Wisdom
in Baghdad. At that time, the patron of the House of Wisdom was El Mamun,
Calif of Baghdad and son of Harun al Raschid. It is told, that one day the Calif
called for Al Chwarizmi for a special research project. He presented the formula
1 + 2 ∗ 3 ∗ 4 + 5, which had its origins in a bill for a couple of camels, as he
remarked. Unfortunately, the formula was lacking the parentheses. The task was
to find a general method to redraw the parentheses in the formula (and any sim-
ilar one) such that the outcome was either minimized or maximized – depending
on whether the Calif was on the buying or on the selling side.

We now provide a DP solution for El Mamun’s problem. Clearly, explicit
parentheses add some internal structure to a sequence of numbers and operators.
They tell us how subexpressions are grouped together – which are sums, and
which are products. Let us number the positions in the text t representing the
formula:

t = 0 1 1 + 2 2 3 ∗ 4 3 5 ∗ 6 4 7 + 8 5 9 (1)

such that we can refer to substrings by index pairs: t(0, 9) is the complete string
t, and t(2, 5) is 2 ∗3. A substring t(i, j) that forms an expression can, in general,
be evaluated in many different ways, and we shall record the best value for t(i, j)
in a table entry T (i, j). Since addition and multiplication are strictly monotone
functions on positive numbers, an overall value (x + y) or (x ∗ y) can only be
maximal if both subexpressions x and y are evaluated to their maximal values.
So it is in fact sufficient to record the maximum in each entry. This is our first
use of Bellman’s Principle, to be formalized later.

More precisely, we define

T (i, i + 1) = n, if t(i, i + 1) = n (2)
T (i, j) = max{T (i, k)⊗ T (k + 1, j)|i < k < j, t(k, k + 1) = ⊗} (3)

where ⊗ is either + or ∗. Beginning with the shortest subwords of t, we can
compute successively all defined table entries.

In T (0, 9) we obtain the maximal possible value overall. If, together with
T (i, j), we also record the position k within (i, j) that leads to the optimal value,
then we can reconstruct the reading of the formula that yields the optimal value.

6 Robert Giegerich, Carsten Meyer, Peter Steffen

It is clear that El Mamun’s minimization problem is solved by simply replacing
max by min. Figure 1 gives the results for maximization and minimization of
El Mamun’s bill.

0 1 2 3 4 5 6 7 8 9

0 / (1,1) (3,3) (7,9) (25,36) (30,81)

1 / /

2 / / / (2,2) (6,6) (24,24) (29,54)

3 / / / /

4 / / / / / (3,3) (12,12) (17,27)

5 / / / / / /

6 / / / / / / / (4,4) (9,9)

7 / / / / / / / /

8 / / / / / / / / / (5,5)

9 / / / / / / / / / /

Fig. 1. Results for the maximization and minimization of El Mamun’s bill denoted as
tuple (x, y) where x is the minimal value and y the maximal value.

Note that we have left open a few technical points: We have not provided ex-
plicit code to compute the table T , which is actually triangular, since i is always
smaller than j. Such code has to deal with the fact that an entry remains unde-
fined when t(i, j) is not a syntactically valid expression, like t(1, 4) = “+ 2 *”.
In fact, there are about as many undefined entries as there are defined ones, and
we may call this a case of sparse dynamic programming and search for a more
clever form of tabulation. Another open point is the possibility of malformed
input, like the non-expression “1 + ∗ 2”. The implementation shown later will
take care of all these cases.

The first discovery Al Chwarizmi made, was that there were 14 different ways
to evaluate the bill. In Section 4 we will see that the solution for this problem
closely follows the recurrences just developed, except that there is no maxi-
mization or minimization involved. This is a combinatorial counting problem.
Although DP is commonly associated with optimization problems, we will see
that its scope is actually wider.

2.2 Matrix chain multiplication

A classical dynamic programming example is the matrix chain multiplication
problem [CLR90]. Given a chain of matrices A1, ..., An, find an optimal place-
ment of parentheses for computing the product A1∗...∗An. Since matrix multipli-
cation is associative, the placement of parentheses does not affect the final value.
However, a good choice can dramatically reduce the number of scalar multiplica-
tions needed. Consider three matrices A1, A2, A3 with dimensions 10×100, 100×5
and 5×50. Multiplication of (A1 ∗A2)∗A3 needs 10∗100∗5+10∗5∗50 = 7500

A Discipline of Dynamic Programming over Sequence Data 7

scalar multiplications, in contrast to 10 ∗ 100 ∗ 50 + 100 ∗ 5 ∗ 50 = 75000 when
choosing A1 ∗ (A2 ∗A3).

Let M be a n× n table. Table entry M(i, j) shall hold the minimal number
of multiplications needed to calculate Ai ∗ ... ∗ Aj . Compared to the previous
example, the construction of the search space is considerably easier here since it
does not depend on the structure of the input sequence but only on its length.
M(i, j) = 0 for i = j. In any other case there exist j− i possible splittings of the
matrix chain Ai, ..., Aj into two parts (Ai, ..., Ak) and (Ak+1, ..., Aj). Let (ri, ci)
be the dimension of matrix Ai, where ci = ri+1 for 1 ≤ i < n. Multiplying
the two partial product matrices requires rickcj operations. Again we observe
Bellman’s Principle. Only if the partial products have been arranged internally
in an optimal fashion, can this product minimize scalar multiplications overall.
We order table calculation by increasing subchain length, such that we can look
up all the M(i, k) and M(k + 1, j) when needed for computing M(i, j). This
leads to the following matrix recurrence:

for j = 1 to n do (4)
for i = j to 1 do

M(i, j) =

{
0 for i = j

min{M(i, k) + M(k + 1, j) + rickcj | i ≤ k < j} for i < j

return M(1, n) (5)

Minimization over all possible splittings gives the optimal value for M(i, j).
This example demonstrates that dynamic programming over sequence data is

not necessarily limited to (character) strings, but can also be used with sequences
of other types, in this case pairs of numeric values denoting matrix dimensions.

2.3 Global and local similarity of strings

We continue our series of examples by looking at the comparison of strings.
The measurement of similarity or distance of two strings is an important oper-
ation applied in several fields, for example spelling correction, textual database
retrieval, speech recognition, coding theory, or molecular biology.

A common formalization is the string edit model [Gus97]. We measure the
similarity of two strings by scoring the different sequences of character dele-
tions (denoted by D), character insertions (denoted by I) and character replace-
ments (denoted by R) that transform one string into the other. If a character
is unchanged, we formally model this as a replacement by itself. Thus, an edit
operation is applied at each position.

Figure 2 shows some possibilities to transform the string MISSISSIPPI into
the string SASSAFRAS, visualized as an alignment.

A similarity scoring function δ associates a similarity score of 0 with two
empty strings, a positive score with two characters that are considered similar, a
negative score with two characters that are considered dissimilar. Insertions and
deletions also receive negative scores. For strings x of length m and y of length

8 Robert Giegerich, Carsten Meyer, Peter Steffen

MISSI--SSIPPI MISSISSIPPI- MISSI---SSIPPI

SASSAFRAS---- ---SASSAFRAS SASSAFRAS-----

RR RIIR DDDD DDD R RRRRI RR RIII DDDDD

Fig. 2. Three out of many possible ways to transform the string MISSISSIPPI into the
string SASSAFRAS. Only deletions, insertions, and proper replacements are marked.

n, we compute the similarity matrix Em,n such that E(i, j) holds the similarity
score for the prefixes x1, . . . , xi and y1, . . . , yj . E(m, n) therefore holds the overall
similarity value of x and y.

E is calculated by the following recurrences:

E(0, 0) = 0 (6)

for i = 0 to m− 1 do E(i + 1, 0) = E(i, 0) + δ(D(xi+1)) (7)

for j = 0 to n− 1 do E(0, j + 1) = E(0, j) + δ(I(yj+1)) (8)

for i = 0 to m− 1 do

for j = 0 to n− 1 do

E(i + 1, j + 1) = max




E(i, j + 1) + δ(D(xi+1))
E(i + 1, j) + δ(I(yj+1))
E(i, j) + δ(R(xi+1, yj+1))


 (9)

return E(m, n) (10)

The space and time efficiency of these recurrences is O(mn).
Often, rather than computing the (global) similarity of two strings, it is

necessary to search for local similarities within two strings. In molecular se-
quence analysis, we study DNA sequences, given as strings from four types of
nucleotides, or protein sequences, given as strings from a twenty-letter alphabet
of amino acids. In DNA, we often have long non-coding regions and small coding
regions. If two coding regions are similar, this does not imply that the sequences
have a large global similarity. If we investigate a protein with unknown function,
we are interested in finding a ‘similar’ protein with known biological function. In
this situation, the functionally important sequence parts must be similar while
the rest is arbitrary.

Local similarity asks for the best match of a subword of x with a subword
of y. The Smith and Waterman algorithm [SW81] requires O(mn) time and
space to solve this problem. We compute a matrix Cm,n where the entry C(i, j)
contains the best score for all pairs of suffixes of x1 . . . xi and y1 . . . yj .

C(i, j) = max{score(x′, y′)|x′ suffix of x1 . . . xi and y′ suffix of y1 . . . yj} (11)

A Discipline of Dynamic Programming over Sequence Data 9

Since we are looking for a local property, it must be possible to match arbi-
trary subwords of x and y without scoring their dissimilar prefixes and suffixes.
These subwords are named x′ and y′ in (11), and their score is computed as
in the global similarity case. In order to reject prefixes with negative scores, all
we need to change in comparison to the recurrences for global similarity (see
Equations 6 – 10) is to fix the first line and column to zero-values and to add a
zero-value case in the calculation of the entry C(i +1, j + 1). This zero amounts
to an empty prefix pair joining the competition for the best match at each point
(i, j).

for i = 0 to m− 1 do C(i, 0) = 0 (12)
for j = 0 to n− 1 do C(0, j) = 0 (13)
for i = 0 to m− 1 do

for j = 0 to n− 1 do

C(i + 1, j + 1) = max




0
C(i, j + 1) + δ(D(xi+1))
C(i + 1, j) + δ(I(yj+1))
C(i, j) + δ(R(xi+1, yj+1))




(14)

return maxi,j C(i, j) (15)

Equation 15 performs an extra traversal of table C to obtain the highest
score overall.

2.4 Fibonacci numbers and the case of recursion versus tabulation

In this last introductory example, we make our first deviation from the tradi-
tional view of dynamic programming. There are many simple cases where the
principles of DP are applied without explicit notice. Fibonacci numbers are a
famous case in point. They are defined by

F (1) = 1 (16)
F (2) = 1 (17)

F (i + 2) = F (i + 1) + F (i) (18)

Fibonacci numbers may seem atypical as a DP problem, because there is no
optimization criterion. We have already remarked (cf. Section 2.1) that optimiza-
tion is an important, but not a mandatory constituent of a dynamic programming
problem.

Every student of computer science knows that computing F as a recursive
function is very inefficient – it takes 2F (n) − 1 calls to F to compute F (n).
Although we really need only the n values F (1) through F (n−1) when computing
F (n), each value F (n−k) is calculated not once, but F (k+1) times. The textbook

10 Robert Giegerich, Carsten Meyer, Peter Steffen

remedy to this inefficiency is strengthening the recursion – define

F (n) = Fib(0, 1, n) (19)
Fib(a, b, i) = if (i = 1) then b else Fib(b, a + b, i− 1) (20)

Here we shall consider another solution. This one requires no redefinition of F at
all, just a change of data type: Consider F as an integer array, whose elements
are defined via Equations 16 – 18. In a data driven programming language, its
elements will be calculated once when first needed. In an imperative language,
since F is now data rather than a function, we need to add explicit control
structure – an upper bound for n and a for-loop to actually calculate the array
elements in appropriate order.

The lesson here is the observation that a table (matrix, array) over some
index domain, defined by recurrences, is mathematically equivalent to a recursive
function defined by the very same recurrences. The difference lies solely in the
efficiency of the actual computation. What requires exponential effort in the case
of recursive functions may require only polynomial effort when using tabulation.
This gives us a first hint at a more systematic development of DP algorithms:
Think of a DP algorithm as a family of recursive functions over some index
domain. Don’t worry about tabulation and evaluation order, this can always be
added when the design has stabilized.

2.5 Summary of Section 2

In all the examples studied, there was first some informal reasoning, including
a consideration of Bellman’s Principle, and subsequently we wrote down the re-
currences. (In the Fibonacci example, only a single value is generated for each
subproblem. Hence, the objective function degenerates to the identity, and Bell-
man’s Principle is trivially satisfied.) While these examples are simple enough
to be solved this way, for more ambitious tasks it would be nice to have a more
abstract level that supports formal reasoning about the problem. For example,
none of our examples provides a description of the search space, and asking for
its size or the (non-)redundancy of its traversal requires to develop another set
of – similar, but not identical – recurrences.

Typically, the scoring scheme is meant to be a parameter of the algorithm,
but this separation is not perfect. This applies to the score function δ used
in the string comparison example. Consider the zero case added in the Smith-
Waterman recurrences: It appears to be a part of the algorithm, but we shall see
later, that it actually belongs to the scoring scheme. The same holds for the fact
that scores from individual edit operations are added up rather than combined
in some other fashion.

In the sequel, we shall seek a perfect separation of concerns, which will make
our programs easier to understand, and usable in a modular fashion.

A Discipline of Dynamic Programming over Sequence Data 11

3 Foundations of Algebraic Dynamic Programming

ADP is based on the notions of yield grammars, evaluation algebras, and a
formalization of Bellman’s Principle. They are introduced in this section, while
the program development method based on them is formulated at the beginning
of Section 4.

3.1 Basic terminology

Alphabets. An alphabet A is a finite set of symbols. Sequences of symbols are
called strings. ε denotes the empty string, A1 = A, An+1 = {ax|a ∈ A, x ∈ An},
A+ =

⋃
n≥1An, A∗ = A+ ∪ {ε}.

Signatures and algebras. A (single-sorted) signature Σ over some alphabet A
consists of a sort symbol S together with a family of operators. Each operator
o has a fixed arity o : s1...sko → S, where each si is either S or A. A Σ-algebra
I over A, also called an interpretation, is a set SI of values together with a
function oI for each operator o. Each oI has type oI : (s1)I ...(sko)I → SI where
AI = A.

A term algebra TΣ arises by interpreting the operators in Σ as constructors,
building bigger terms from smaller ones. When variables from a set V can take
the place of arguments to constructors, we speak of a term algebra with variables,
TΣ(V), with V ⊂ TΣ(V). By convention, operator names are capitalized in the
term algebra.

Tree grammars. Terms will be viewed as rooted, ordered, node-labeled trees
in the obvious way. All inner nodes carry (non-nullary) operators from Σ, while
leaf nodes carry nullary operators or symbols fromA. A term/tree with variables
is called a tree pattern. A tree containing a designated occurrence of a subtree t
is denoted C[...t...].

A tree language over Σ is a subset of TΣ . Tree languages are described by tree
grammars, which can be defined by analogy to the Chomsky hierarchy of string
grammars. Here we use regular tree grammars, originally studied in [Bra69]. In
[GS88] they were redefined to specify term languages over some signature. This
is the form of tree grammars we use here; our further specialization in Definition
1 lies solely in the distinguished role of A.

Definition 1 (Tree grammar over Σ and A.)
A (regular) tree grammar G over Σ and A is given by

– a set V of nonterminal symbols,
– a designated nonterminal symbol Z, called the axiom, and
– a set P of productions of the form v → t, where v ∈ V and t ∈ TΣ(V).

The derivation relation for tree grammars is →∗, with C[...v...] → C[...t...] if
v → t ∈ P . The language of v ∈ V is L(v) = {t ∈ TΣ|v →∗ t}, the language of
G is L(G) = L(Z).2

12 Robert Giegerich, Carsten Meyer, Peter Steffen

Figure 3 shows a tree grammar for the global similarity example of Section 2.3.
For convenience, we add a lexical level to the grammar concept, allowing

strings from A∗ in place of single symbols. By convention, achar denotes an
arbitrary character, char c a specific character c, string an arbitrary string
and empty the empty string.

Also for brevity, we allow syntactic conditions associated with righthand
sides.

Nil

’$’

Grammar globsim, axiom alignment

achar acharalignment

R

I

acharalignmentalignmentachar

Dalignment

Fig. 3. The tree grammar globsim for global similarity (see Section 2.3)

The yield of a tree is normally defined as its sequence of leaf symbols. Here
we are only interested in the symbols from A∗; nullary constructors by definition
have yield ε. A formal definition follows in Section 3.4.

Figure 4 shows a tree derived by grammar globsim, together with its yield
string.

candidate1 = D(’d’,R(’a’,I(R(’r’,R(’l’,R(’i’,R(’n’,R(’g’,Nil(’$’),

’e’),’n’),’i’),’l’),’r’),’i’),’a’))

yield(candidate1) = "darling$enilria"

D

’d’

R

’a’

I R

’r’

R

’l’

R

’i’

R

’n’

R

’g’

Nil ’$’

’e’’n’’i’’l’’r’’i’’a’

Fig. 4. The term representation of a global similarity candidate candidate1 for
darling and airline, and the tree representation of this term. Only the rightmost
R is a proper replacement, the others are matches.

A Discipline of Dynamic Programming over Sequence Data 13

3.2 Conceptual separation of recognition and evaluation

Any dynamic programming algorithm implicitly constructs a search space from
its input. The elements of this search space have been given different names: pol-
icy in [Bel57], solution in [Mor82], subject under evaluation in [Gie00a]. Since the
former two terms have been used ambiguously, and the latter is rather technical,
we shall use the term candidate for elements of the search space. Each candidate
will be evaluated, yielding a final state, a cost, or a score, depending whether
one follows [Bel57], [Mor82] or [DEKM98]. We shall use the term answer for the
result of evaluating a candidate.

Typically, there is an ordering defined on the answer data type. The DP
algorithm returns a maximal or minimal answer, and if so desired, also one or
all the candidates that evaluate(s) to this answer. Often, the optimal answer is
determined first, and a candidate that led to it is reconstructed by backtracing.
The candidates themselves do not have an explicit representation during the
DP computation. Our goal to separate recognition and evaluation requires an
explicit representation of candidates.

This is our general idea of how to obtain such an explicit representation of
candidates in any DP algorithm: Imagine that during computing an answer, we
did not actually call those functions that perform the evaluation. Instead, we
would apply them symbolically, building up a formula that – once evaluated
– would yield this answer value. This formula itself is a perfect choice for the
candidate representation, because

– the formula represents everything we need to know about the candidate to
eventually evaluate it,

– the complete ensemble of such formulas, constructed for a specific problem
instance, is a precise description of the search space.

Apparently, the above idea works for any DP algorithm over any data domain.
After all, whenever we compute an answer value, we can as well compute it
symbolically and record the formula. The subsequent treatment, however, only
considers the case of sequential input. Our running example of global string
similarity actually requires two string inputs. Figure 4 shows a global similarity
candidate for the strings "darling" and "airline". To represent them as a
single string, the latter is reversed and appended to the former, separated by a
separator symbol $ not occurring elsewhere2.

To design a DP algorithm, we therefore need to specify three aspects: the
language of candidate formulas, the search space of candidates spawned by a
particular input, and their eventual evaluation. We start with the latter aspect.

3.3 Evaluation algebras

Definition 2 (Evaluation algebra.) Let Σ be a signature with sort symbol Ans.
A Σ-evaluation algebra is a Σ-algebra augmented with an objective function
h : [Ans]→ [Ans], where [Ans] denotes lists over Ans. 2

2 In Section 5.1 the relation between single sequence analysis and pairwise sequence
comparison is discussed.

14 Robert Giegerich, Carsten Meyer, Peter Steffen

In most DP applications, the purpose of the objective function is minimizing
or maximizing over all answers. We take a slightly more general view here. Aside
from minimization or maximization, the objective may be to calculate a sample
of answers, or all answers within a certain threshold of optimality. It could even
be a complete enumeration of answers. We may compute the size of the search
space or evaluate it in some statistical fashion, say by averaging over all answers.
This is why in general, the objective function will return a list of answers. Each
answer is the evaluation of a candidate; if the enumeration of candidates is our
objective, it is the candidate itself. If maximization is our objective, this list
holds the maximal answer as its only element. If the search space should be
empty for a particular input, this list will be empty.

We formulate a signature Π for the global similarity example:

Nil : A → Ans
D : A × Ans → Ans
I : Ans × A → Ans
R : A × Ans × A → Ans
h : [Ans] → [Ans]

We formulate two evaluation algebras for signature Π . The algebra unit
(Figure 5 right) scores each matching character by +1, and each character mis-
match, deletion or insertion by −1. The algebra wgap (Figure 5 left) is a minor
generalization of unit. It uses two parameter functions w and gap, that may score
(mis)matches and deletions or insertions depending on the concrete characters
involved. For example, a phoneticist would choose w(’v’,’b’) as a (positive)
similarity rather than a (negative) mismatch.

Answgap = IN Ansunit = IN

wgap = (nil,d,i,r,h) unit = (nil,d,i,r,h)

where where

nil(a) = 0 nil(a) = 0

d(x,s) = s + gap(x) d(x,s) = s - 1

i(s,y) = s + gap(y) i(s,y) = s - 1

r(a,s,b) = s + w(a,b) r(a,s,b) = if a==b then s + 1 else s - 1

h([]) = [] h([]) = []

h (l) = [maximum(l)] h (l) = [maximum(l)]

Fig. 5. Algebras wgap (left) and unit (right)

For term candidate1 of Figure 4, we obtain:

candidate1unit = 2

candidate1wgap = gap(’d’) + w(’a’,’a’) + gap(’i’)+ w(’r’,’r’) +

w(’l’,’l’) + w(’i’,’i’)+ w(’n’,’n’) + w(’e’,’g’) + 0

A Discipline of Dynamic Programming over Sequence Data 15

3.4 Yield grammars

To describe the search space, we have to solve two problems: Not all elements of
TΣ are legal candidates in general, and for a given input, only the legal candidates
are to be considered which have this input as their yield. In our formalism, the
yield function y has type TΣ → A∗ and is defined by y(a) = a for a ∈ A, and
y(C(x1, ..., xn)) = y(x1)...y(xn) for n ≥ 0 and each n-ary operator C of Σ.

Definition 3 (Yield grammars and yield languages.) Let G be a tree grammar
over Σ and A, and y the yield function. The pair (G, y) is called a yield grammar.
It defines the yield language L(G, y) = y(L(G)). 2

The grammar of Figure 3 can now be interpreted in two ways: as a regular
tree grammar defining the tree language L(G), or as a yield grammar, defining
the string language y(L(G)).

Definition 4 (Yield parsing.) Given a yield grammar (G, y) over A and w ∈A∗,
the yield parsing problem is: Find PG(w) := {t ∈ L(G)|y(t) = w}.2

Yield parsing is the computational engine underlying ADP. The search space
spawned by input w is PG(w). A yield parser constructs the terms t ∈ TΣ in a
bottom up fashion, identically to the way in which an interpretation I evaluates
the term tI . Thus, if we substitute each term constructor function f in the yield
parser by the function fI of the evaluation algebra, the “parser” will produce
answers of the desired kind rather than terms representing candidates.

3.5 Algebraic dynamic programming and Bellman’s Principle

Given that yield parsing traverses the search space, all that remains to do is to
evaluate the candidates in some algebra and apply the objective function.

Definition 5 (Algebraic dynamic programming.)

– An ADP problem is specified by a signature Σ over A, a yield grammar
(G, y) over Σ, and a Σ-evaluation algebra I with objective function hI .

– An ADP problem instance is posed by a string w ∈ A∗. The search space it
spawns is the set of all its parses, PG(w).

– Solving an ADP problem is computing

hI{tI | t ∈ PG(w)}.

in polynomial time and space with respect to |w|.

2

16 Robert Giegerich, Carsten Meyer, Peter Steffen

So far, there is one essential ingredient missing: efficiency. Since the size of the
search space may be exponential in terms of the input size, an ADP problem
can be solved in polynomial time and space by the yield parser only under the
condition well known as Bellman’s Principle of Optimality. In Bellman’s own
words:

“An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.” [Bel57]

We formalize this principle:

Definition 6 (Algebraic version of Bellman’s Principle.) An evaluation alge-
bra satisfies Bellman’s Principle, if for each k-ary operator f in Σ and all answer
lists z1, . . . , zk, the objective function h satisfies

h([f(x1, . . . , xk) | x1 ← z1, . . . , xk ← zk])
= h([f(x1, . . . , xk) | x1 ← h(z1), . . . , xk ← h(zk)]).

2

The practical meaning of the optimality principle is that we may push the
application of the objective function inside the computation of subproblems,
thus preventing combinatorial explosion. We have formulated Bellman’s Princi-
ple such that it is correct to reduce any intermediate answer list, computed by
any function f , by an application of the choice function h.

In practice, we can allow ourselves to cheat a little bit: We may omit the
application of h for answers computed by certain “bad” functions f not satisfying
the principle. This means we have to deal with longer intermediate answer lists,
until a “good” function is applied to them. In practice, we shall annotate the
tree grammar to indicate the cases where h is to be applied.

The above formulation of Bellman’s Principle assumes that all answers from
different alternatives of a production are computed before the choice function is
applied to the answer list. This is normally sufficient, and we know of only one
exception, where a choice from the answers of alternatives 1 and 2 is required be-
fore alternative 3 is considered. This exception, however, is quite an interesting
one - a technique that enables the production of an arbitrary number of an-
swers in order of optimality, by a merge-sorting of the intermediate answer lists
[GM02]. In such a case, Bellman’s Principle must be strengthened by another
requirement:

h(z1 ++ z2) = h(h(z1) ++ h(z2))

Comparing our version of Bellman’s Principle to others given in the literature,
we find that it is quite general, because nothing is assumed about the choice
function except that it maps lists to lists. The standard case, considered by
Bellman and in most programming textbooks, arises when h is optimization with

A Discipline of Dynamic Programming over Sequence Data 17

respect to some total ordering; in this case our condition requires monotonicity
of each f . In the words of [BM97], f distributes over the ordering relation. Morin
elaborates the case when h is to return all smallest (or largest) answers [Mor82].
In this case, our condition implies strict monotonicity, consistent with Morin’s
analysis. Our condition also applies in settings where no optimization is involved.
In the counting algebras introduced in the next section, h is list summation
while f is ∗, and the counting algebras are correct because ∗ distributes over
+. A similar situation arises with the probabilistic algebras used for significance
evaluation of structural motifs in RNA [MG02].

In their relational “Algebra of Programming” [BM97], Bird and de Moor cast
optimization problems in the form min R·Λ(([S])·([Q])◦). Here, ([Q])◦ is the inverse
of an homomorphism from some intermediate data type to the input domain. ([S])
is evaluation. Λ is needed to convert relations to set-valued functions, and finally,
min R denotes minimization with respect to relation R. Thus, our concepts TΣ ,
I and h are explicitly present in the relational approach as Q, S and R, while
G remains implicit. The need for G is not felt in [BM97], since the grammars
implicit in the examples studied there only use a single nonterminal symbol,
and structural recursion over TΣ is sufficient in such a case. We shall later
see examples where all the craftsmanship of DP lies in the design of nontrivial
grammars (Section 4.5).

The relational formalism is more general than ours, as programs can be rela-
tions and the input domain is not restricted to sequential data. Another, minor
difference is that our choice function h is not restricted to optimization – this is
motivated by the development methodology we shall propose, and its usefulness
will emerge in Section 4. Aside from this aspect, the ADP approach can be seen
as a specialization of the relational formalism, which operates on an intermedi-
ate level of abstraction, giving us more control over the actual implementation
while retaining conceptual clarity.

This completes the basic theoretical framework of ADP. We can now practice
ADP with pencil and paper – but we want more.

3.6 ADP notation

For practical algorithm development in the ADP framework, we need a computer
readable notation, which will be introduced in this section. The declarative se-
mantics of ADP notation is that it allows one to describe signatures, evaluation
algebras and yield grammars. The operational semantics of ADP notation is
that of DP recurrences – ADP notation actually constitutes executable code.
How this is achieved is an aspect completely deferred to Section 5.

The signature Σ is written as an algebraic data type definition in the style
of the functional programming language Haskell [PJ03]. This is signature Π in
ADP notation:

data Alignment = Nil Char |

D Char Alignment |

I Alignment Char |

18 Robert Giegerich, Carsten Meyer, Peter Steffen

R Char Alignment Char

As in EBNF, the productions of the yield grammar are written as equations.
The operator <<< is used to denote the application of a tree constructor to its
arguments, which are chained via the ~~~-operator. Operator ||| separates mul-
tiple righthand sides of a nonterminal symbol. Parentheses are used as required
for larger trees. (Later, this notation will also be embedded in Haskell (Section
5); for the moment, just take it as our ASCII notation for yield grammars.) The
axiom symbol is indicated by the keyword axiom, and syntactic conditions may
be attached to productions via the keyword with. Finally, the evaluation algebra
is a tuple of functions, provided as a single parameter alg with the grammar,
which is split up into its components by a pattern matching clause.

This is the grammar globsim in ADP notation:

globsim alg = axiom alignment where

(nil, d, i, r, h) = alg

alignment = nil <<< char ’$’ |||

d <<< achar ~~~ alignment |||

i <<< alignment ~~~ achar |||

r <<< achar ~~~ alignment ~~~ achar

3.7 Parsing, tabulation and choice

Given a yield grammar and an evaluation algebra, a tabulating yield parser will
solve a problem instance as declared in Definition 5. Implementation of yield
parsing is explained in detail in Section 5.2. For programming with ADP, we
do not really have to know how yield parsing works. Think of it as a family
of recursive functions, one for each nonterminal of the grammar. However, the
yield parser needs two pieces of information not yet expressed in the grammar:
tabulation and choice.

If nothing was said about tabulation, the yield parser would compute partial
results many times, quite like our original Fibonacci function. By adding the
keyword "tabulated", we indicate that the parser for a particular nonterminal
symbol shall make use of tabulation. When a tabulated symbol v is used in a
righthand side, this means a table lookup rather than a recursive call.

In the small examples we have shown so far, there is only a single nonterminal
symbol, and naturally, it is tabulated. In larger grammars, typically only a subset
of all nonterminal symbols needs to be tabulated. This is why we provide an
explicit keyword to indicate tabulation. It is in fact a major advantage of ADP
that we can write the grammar first and afterwards decide about tabulation.
One might even think of automating the task of table assignment, but trying to
optimize both time and space requirements makes this a difficult problem.

If nothing was said about choice, the parser would not apply the objective
function and hence return a list of all answers. By adding "... h" to the right-
hand side of a production, we indicate that whenever a list of alternative answers
has been constructed according to this production, the objective function h is to
be applied to it.

A Discipline of Dynamic Programming over Sequence Data 19

With these two kinds of annotation, our yield grammar example globsim
looks like this:

globsim alg = axiom alignment where

(nil, d, i, r, h) = alg

alignment = tabulated(

nil <<< char ’$’ |||

d <<< achar ~~~ alignment |||

i <<< alignment ~~~ achar |||

r <<< achar ~~~ alignment ~~~ achar ... h)

3.8 Efficiency analysis of ADP programs

From the viewpoint of programming methodology, it is important that asymp-
totic efficiency can be analyzed and controlled on the abstract level. This prop-
erty is a major virtue of ADP – it allows one to formulate efficiency tuning as
grammar and algebra transformations. Such techniques are described in [GM02].
Here we give only the definition and the theorem essential for determining the
efficiency of an ADP algorithm.

Definition 7 (Width of productions and grammar.) Let t be a tree pattern,
and let k be the number of nonterminal or lexical symbols in t whose yield
size is not bounded by a constant. We define width(t) = k − 1. Let π be a
production v → t1| . . . |tr. We define width(π) = max{width(t1, . . . , tr)}, and
width(G) = max{width(π) | π is a production in G}. 2

Theorem 8 Assuming the number of answers selected by each application of h
is bounded by a constant, the execution time of an ADP algorithm described by
yield grammar (G, y) on input w of length n is O(n2+width(G)).

Proof: See [GS02] 2

In a standard application using minimization or maximization, the objective
function h always reduces an answer list to a single (minimal or maximal) el-
ement. Asking for the k best answers, where k is a constant, does not affect
asymptotic efficiency. However, in some applications one might ask for all an-
swers, or for all answers within a certain threshold of optimality. In such a case,
the algorithm will become output sensitive, as even a fraction of all answers may
have a size exponential in n.

Considering the efficiency of globsim, we find that all productions have width
0. Hence, Theorem 8 says that the global similarity problem is solved in O(n2)
space and time, consistent with the explicit recurrences given in Equations 6 -
10 (Section 2.3).

20 Robert Giegerich, Carsten Meyer, Peter Steffen

3.9 A summary of the ADP framework

By means of an evaluation algebra and a yield grammar we can completely
specify a dynamic programming algorithm. We can analyze its efficiency using
Theorem 8. We suggest a specific notation for writing grammars and algebras,
which will be converted into executable yield parsers in Section 5.

This completes our framework. Let us summarize the key ideas of Algebraic
Dynamic Programming:

Phase separation: We conceptually distinguish recognition and evaluation phases.
Term representation: Individual candidates are represented as elements of a

term algebra TΣ; the set of all candidates is described by a tree grammar.
Recognition: The recognition phase constructs the set of candidates arising from

a given input string, using a tabulating yield parser.
Evaluation: The evaluation phase interprets these candidates in a concrete Σ-

algebra, and applies the objective function to the resulting answers.
Phase amalgamation: To retain efficiency, both phases are amalgamated in a

fashion transparent to the programmer. The term algebra in the yield parser
is substituted by an evaluation algebra.

When running the algorithm, the candidate representation effectively cancels
out. This is why it is not seen in traditional DP recurrences. For algorithm design,
however, it plays a crucial role. It allows one to resolve the conglomeration of
issues criticised initially. While the traditional recurrences deal with search space
construction, evaluation and efficiency concerns in a non-separable way, ADP has
separated them: Evaluation is in the algebra, the search space is in the grammar,
and efficiency concerns are treated by the grammar annotation.

3.10 Yield grammars versus context free grammars

Before proceeding, let us comment on the most frequent question asked by com-
puter scientists when first confronted with the ADP approach. It is easy to show
that yield languages are simply context free languages (cf. [GS02]). Could not
the same be achieved by sticking with the familiar context free grammars and
their parse trees? The answer is no. Yield grammars are a two level concept, first
generating a tree by the tree grammar and then deriving its yield. Shortcutting
the two-level scheme by a context free grammar eliminates the generated tree –
the candidate – which is our cornerstone for the separation of the search space
and its evaluation.

We discuss three situations where the difference between using CFGs or yield
grammars matters. The first case is a matter of convenience, the second a matter
of efficiency, and the third a matter of ambiguity control.

Imagine we are using CFGs and an Earley or CYK-type parser that calls a
semantic routine with each production. Consider three tree grammar produc-
tions:

A Discipline of Dynamic Programming over Sequence Data 21

a = f <<< b ~~~ (g <<< c ~~~ d)

b = f <<< b ~~~ c |||

g <<< b ~~~ c

The first production uses the fact that we can write trees of any size on the
righthand side of a tree grammar. Slightly less convenient, in a CFG we would
introduce a extra nonterminal and split the production in two:

a→ b a′ (call f)
a′ → c d (call g)

For nonterminal b, we obtain two identical string productions,

b→ b c | b c

The standard definition of CFGs speaks of a set of productions, which cannot
contain multiples. A solution would be to allow labelled productions, one labelled
f and one labelled g to make them distinct – the signature returns through the
back door.

Next, we turn to efficiency concerns and are confronted with a phenomenon
called the yield parsing paradox [GS02]: Parsing of ambiguous CFGs can be done
in O(n3) time. On the other hand, there are DP algorithms that require O(n4)
or higher, described by yield grammars of width ≥ 2.

A context free production can be brought into Chomsky normal form, thereby
reducing its width to 1. For example,

a→ b c d

is transformed to
a→ b a′

a′ → c d

Why can we not apply this transformation to the yield grammar production

a = f <<< b ~~~ c ~~~ d ... h

by writing

a = f1 <<< b ~~~ a’ ... h

a’ = f2 <<< c ~~~ d ... h’ ?

There are always functions f1, f2 such that

f(x, y, z) = f1(x, f2(y, z))

but a choice function h′ that satisfies Bellman’s Principle may not exist. In
other words, we cannot make an optimal choice based on seeing c and d alone.

22 Robert Giegerich, Carsten Meyer, Peter Steffen

We may drop the application of h′ altogether – but then, a′ will return a list
of answers of length proportional to n – bringing the parser back to efficiency
O(n4). This explains how the efficiency of DP algorithms depends not only on
the grammar, but also on the scoring scheme. Such explanation cannot be given
in the terminology of CFGs.

Finally, let us look at ambiguity. This is an issue of great practical impor-
tance, and will reoccur when we discuss “real world” applications of ADP in
Section 4.5. The CFG corresponding to a yield grammar is always ambiguous
(except for trivial cases). After all, if an input string did not have several parses,
we would not have a problem of optimization. This ambiguity, however, can have
a good or a bad reason3. These cannot be distinguished in CFG terminology,
whereas in yield grammars, they are separated: Many different candidates have
the same yield string: This is good, they constitute our search space. The same
candidate has two derivations in the tree grammar: This is bad, as the algorithm
will yield redundant answers when asking for more than one, and all counting
and probabilistic scoring will be meaningless. We remark without proof that for
tree grammars, ambiguity is decidable, while for CFGs, it is not.

Altogether, while part of our treatment could also be formulated in the ter-
minology of CFGs, we feel that yield grammars have a lot to offer. And after all,
they represent a small hurdle for a trained computer scientist.

4 The ADP program development method

In this chapter, we first formulate the method we advocate for developing DP al-
gorithms, based on the concepts introduced so far. We then apply this method to
three of our four introductory problems. (We shall not re-address the Fibonacci
numbers problem, since it is a rather untypical problem. Several analyses per-
formed on Fibonacci numbers via ADP, however, can be studied on the ADP
web site.) We shall emphasize the systematics of programming with ADP. Fi-
nally, in Section 4.5, we report on applications of ADP in our work on RNA
structure prediction and analysis.

Except for minor details omitted for the sake of the presentation, all the
ADP algorithms developed here are executable code. In the examples, we use
the notation P ===> R to indicate that program call P delivers result R. Readers
are invited to run these programs themselves by visiting the ADP website at
http://bibiserv.techfak.uni-bielefeld.de/adp.

4.1 Systematic program development

As an ADP algorithm is completely specified by the alphabet A, the signature
Σ, the yield grammar (G, y) and an evaluation algebra E , we must mainly decide
on the appropriate order of designing these constituents.

3 There is actually a third reason which we ignore here – see [Gie00b] for a deeper
discussion.

A Discipline of Dynamic Programming over Sequence Data 23

Step A We fix the input alphabet. This is normally clear from the problem
statement.

Step Σ We design the signature, introducing one operator for each situation
that may be evaluated differently from others.

Step E We design one or more evaluation algebras:
– a scoring algebra, solving our optimization problem,
– the enumeration algebra, implementing the enumeration of all can-

didates of a particular problem instance,
– the counting algebra, computing the size of the search space, in a

more efficient way than by explicit enumeration,
– a prettyprinting algebra, useful when the application domain knows

a user friendly representation of candidates, typically different from
our term algebra.

While only the scoring algebra is strictly required to solve the opti-
mization problem at hand, we consider it part of our method also to
provide the enumeration and counting algebras, as they open up sys-
tematic testing methods.

Step G We specify the yield grammar G in ADP notation, describing how can-
didates are composed from the different constructs represented by the
operators of Σ.

After solving each of our introductory problems, we formulate some problem
variants, in order to demonstrate how parts of the ADP design can be re-used
on related problems.

4.2 The oldest DP problem in the world

The alphabet Input to our problem is a formula written in ASCII charac-
ters, consisting of digits and operator symbols. We shall also allow multi-digit
numbers.

The signature Rather than adding parentheses, our signature Bill intro-
duces operators Add and Mult to make explicit the different possible internal
structures of El Mamun’s bill. The operators Val and Ext represent the conver-
sion of digit strings to integer values.
data Bill = Mult Bill Char Bill |

Add Bill Char Bill |

Ext Bill Char |

Val Char

In the sequel, we consider three different readings of El Mamun’s bill:
bill1: (1 + 2) ∗ ((3 ∗ 4) + 5)
bill2: ((1 + 2) ∗ 3) ∗ (4 + 5)
bill3: 1 + ((2 ∗ (3 ∗ 4)) + 5)

Figure 6 shows the representations of these candidates, both as terms and as
trees.

24 Robert Giegerich, Carsten Meyer, Peter Steffen

bill1 = Mult (Add (Val ’1’) ’+’ (Val ’2’)) ’*’ (Add (Mult (Val ’3’) ’*’

(Val ’4’)) ’+’ (Val ’5’))

bill2 = Mult (Mult (Add (Val ’1’) ’+’ (Val ’2’)) ’*’ (Val ’3’)) ’*’

(Add (Val ’4’) ’+’ (Val ’5’))

bill3 = Add (Val ’1’) ’+’ (Add (Mult (Val ’2’) ’*’ (Mult (Val ’3’) ’*’

(Val ’4’))) ’+’ (Val ’5’))

Mult

Add

Val

’1’

’+’ Val

’2’

’*’ Add

Mult

Val

’3’

’*’ Val

’4’

’+’ Val

’5’

Mult

Mult

Add

Val

’1’

’+’ Val

’2’

’*’ Val

’3’

’*’ Add

Val

’4’

’+’ Val

’5’

Add

Val

’1’

’+’ Add

Mult

Val

’2’

’*’ Mult

Val

’3’

’*’ Val

’4’

’+’ Val

’5’

Fig. 6. The term representations of the three candidates for El Mamun’s bill and their
tree visualizations.

The evaluation algebras

The enumeration and the counting algebra. Enumeration and counting algebras
are two standard algebras that come with our method. They are used for sys-
tematic testing. For any given signature Σ, the enumeration algebra is just the
term algebra TΣ , augmented with the identity as an objective function. Using
the enumeration algebra, the yield parser strictly runs as a parser – it does no
evaluation, but produces a list of all candidates it has recognized. Mathemati-
cally speaking, all other algebras are homomorphic images of the enumeration
algebra.

Ansenum = TBill Anscount = IN

enum = (val,ext,add,mult,h) where count = (val,ext,add,mult,h) where

val = Val val(c) = 1

ext = Ext ext(n,c) = 1

add = Add add(x,t,y) = x * y

mult = Mult mult(x,t,y) = x * y

h = id h([]) = []

h([x1, . . . , xr]) = [x1 + · · ·+ xr]

For any given signature Σ, the counting algebra evaluates each individual
candidate to 1. However, this is not done by simply interpreting each operator
in Σ by a constant function equal to 1. Instead, an operator taking (say) two
constituents, multiplies their counts. If, for a given section of the input, a candi-
date of form Mult a b can be built from ca candidates for a and cb candidates

A Discipline of Dynamic Programming over Sequence Data 25

for b, then itself has a count of ca ∗ cb. Choosing summation for the choice func-
tion in the counting algebra, we can compute the number of candidates much
more efficiently than by enumerating all candidates and then counting them.

We will return to the use of the enumeration and the counting algebra in the
section on testing.

The buyer’s and the seller’s algebra. The following two scoring algebras solve
El Mamun’s problem. They use the function decode to convert a digit to an
integer value. Each candidate evaluates to its value, according to the parenthe-
sization implicit in the candidate’s structure. On the buying side, of course, El
Mamun seeks to minimize the bill. On the selling side, he seeks to maximize it.

Ansbuyer = IN Ansseller = IN

buyer = (val,ext,add,mult,h) where seller = (val,ext,add,mult,h) where

val(c) = decode(c) val(c) = decode(c)

ext(n,c) = 10 * n + decode(c) ext(n,c) = 10 * n + decode(c)

add(x,t,y) = x + y add(x,t,y) = x + y

mult(x,t,y) = x * y mult(x,t,y) = x * y

h([]) = [] h([]) = []

h (l) = [minimum(l)] h (l) = [maximum(l)]

The prettyprinting algebra Candidates in term form are particularly hard to
read. We provide a prettyprinting algebra that computes candidates as paren-
thesized strings.

Anspretty = A∗

pretty = (val,ext,add,mult,h) where

val(c) = [c]

ext(n,c) = n ++ [c]

add(x,t,y) = "(" ++ x ++ (t:y) ++ ")"

mult(x,t,y) = "(" ++ x ++ (t:y) ++ ")"

h = id

The yield grammar The yield grammar describes all possible internal read-
ings of El Mamun’s formula (and any other such formula).

bill alg = axiom formula where

(val, ext, add, mult, h) = alg

formula = tabulated (

number |||

add <<< formula ~~~ plus ~~~ formula |||

mult <<< formula ~~~ times ~~~ formula ... h)

number = val <<< digit ||| ext <<< number ~~~ digit

26 Robert Giegerich, Carsten Meyer, Peter Steffen

digit = char ’0’ ||| char ’1’ ||| char ’2’ ||| char ’3’ |||

char ’4’ ||| char ’5’ ||| char ’6’ ||| char ’7’ |||

char ’8’ ||| char ’9’

plus = char ’+’

times = char ’*’

Testing Running the yield parser for grammar bill, using the five algebras in
turn, and input "1+2*3*4+5", we obtain:

bill enum "1+2*3*4+5" ===> [

Add (Val ’1’) ’+’ (Add (Mult (Val ’2’) ’*’ (Mult (Val ’3’) ’*’

(Val ’4’))) ’+’ (Val ’5’)),

Add (Val ’1’) ’+’ (Add (Mult (Mult (Val ’2’) ’*’ (Val ’3’)) ’*’

(Val ’4’)) ’+’ (Val ’5’)),

Add (Val ’1’) ’+’ (Mult (Val ’2’) ’*’ (Add (Mult (Val’3’) ’*’

(Val ’4’)) ’+’ (Val ’5’))),

...]

bill pretty "1+2*3*4+5" ===> [

"(1+((2*(3*4))+5))",

"(1+(((2*3)*4)+5))",

"(1+(2*((3*4)+5)))",

...]

bill count "1+2*3*4+5" ===> [14]

bill buyer "1+2*3*4+5" ===> [30]

bill seller "1+2*3*4+5" ===> [81]

The first call, using enum, yields a protocol of the complete search space for
the given input. This is feasible only for small inputs, but is a most helpful
testing aid. It helps us to verify that the candidates in the search space actually
have the shape we expect, all relevant cases are in fact discovered, and so on.
The same applies to the second call, using pretty, with the extension that this
provides the candidates in a more user-friendly form.

The third call, using count, merely computes the size of the search space for
the given input. We do this here to verify Al Chwarizmi’s discovery that there
were 14 alternative readings of El Mamun’s formula.

While the enumeration algebra produces a result of potentially exponential
size, the counting algebra merely computes a single number and hence is much
more efficient. The invariance [length(bill enum z)] = bill count z must
hold for all z.

Finally, we see that the buyer and the seller algebra solve El Mamun’s prob-
lems of minimizing and maximizing the value of the formula.

Problem variation: A processor allocation problem
Computation in the days of El Mamun was very slow. A good computing

slave took about 2 minutes to perform an addition, and 5 minutes to perform a

A Discipline of Dynamic Programming over Sequence Data 27

multiplication. Even then, understanding the value of a number took practically
no time. Fortunately, there were abundant slaves, and they could work in parallel
as much as the formula permitted. On a busy day at the bazaar, it might be
better to minimize the time consumed for each individual business contact. The
following algebra selects for the candidate that has the shortest computation
time:

Anstime = IN (computation time in minutes)

time = (val,ext,add,mult,h) where

val(c) = 0

ext(n,c) = 0

add(x,t,y) = max(x,y) + 2

mult(x,t,y) = max(x,y) + 5

h([]) = []

h (l) = [minimum(l)]

Evaluating the three candidates shown in Figure 6 we find computation times
between 12 and 14 minutes

h[bill1time, bill2time, bill3time] =

minimum[12, 12, 14] = 12

and we find that 12 minutes is actually optimal:

bill time "1+2*3*4+5" ===> [12]

4.3 Optimal matrix chain multiplication

The alphabet Our problem input here is a sequence of matrix dimensions
(ri, ci). Hence, A= IN× IN.

The signature Similar to the previous example, we introduce two operators
to represent parenthesization of an expression. A matrix chain can be a single
matrix or a product of two matrix chains.

data Matrixchain = Mult Matrixchain Matrixchain |

Single (Int, Int)

Taking from Section 2.2 our example matrices, A1 : 10 × 100, A2 : 100 × 5
and A3 : 5 × 50, we get two candidates for this chain multiplication. Figure 7
shows the term representation of these candidates and their tree representation.

The evaluation algebras

The enumeration and the counting algebra

Ansenum = TMatrixchain Anscount = IN

enum = (single,mult,h) where count = (single,mult,h) where

single = Single single((r,c)) = 1

mult = Mult mult(x,y) = x * y

h = id h([]) = []

h([x1, . . . , xr]) = [x1 + · · ·+ xr]

28 Robert Giegerich, Carsten Meyer, Peter Steffen

candidate1 = Mult (Single (10,100)) (Mult (Single (100,5)) (Single

(5,50)))

candidate2 = Mult (Mult (Single (10,100)) (Single (100,5))) (Single

(5,50))

Mult

Single

(10,100)

Mult

Single

(100,5)

Single

(5,50)

Mult

Mult

Single

(10,100)

Single

(100,5)

Single

(5,50)

Fig. 7. The term representations of the two candidates for the example matrices and
their tree representations.

The scoring algebra The algebra for determining the minimal number of scalar
multiplications uses a triple (r, m, c) as answer type. (r, c) denotes the dimension
of the resulting matrix and m the minimal number of operations needed to
calculate it. With this answer type writing down the algebra is simple:

Ansminmult = IN× IN× IN

minmult = (single,mult,h) where

single((r,c)) = (r,0,c)

mult((r,m,c),(r’,m’,c’)) = (r,m + m’ + r*c*c’,c’)

h([]) = []

h (l) = [minimum(l)]4

The yield grammar The yield grammar describes all possible groupings of
the matrix chain product.

matrixmult alg = axiom matrices where

(single, mult, h) = alg

matrices = tabulated (

single <<< achar |||

mult <<< matrices ~~~ matrices ... h)

Note that, by the definition of A, achar here denotes a single “character” (ri, ci).

4 The objective function considers all three triple elements for minimization. But since
r and c are the same for all candidates of a fixed subchain, only m is relevant to this
operation.

A Discipline of Dynamic Programming over Sequence Data 29

Testing For input z = [(10,100),(100,5),(5,50)] we obtain:

matrixmult enum z ===> [Mult (Single (10,100)) (Mult (Single (100,5))

(Single (5,50))),

Mult (Mult (Single (10,100)) (Single (100,5)))

(Single (5,50))]

matrixmult count z ===> [2]

matrixmult minmult z ===> [(10,7500,50)]

matrixmult count (z++z++z) ===> [1430]

matrixmult minmult (z++z++z) ===> [(10,20375,50)]

Problem variation: Minimizing intermediate storage
Another interesting problem is to determine the optimal evaluation order for

minimizing the memory usage needed for processing the matrix chain. This is
motivated by the fact that memory allocated during calculation can be released
in succeeding steps. Consider two matrix chains C1 and C2. For multiplying
C1 ∗ C2 we have two possible orders of calculation. When processing C1 first
we have to store the resulting matrix while processing C2 and then store both
results during this multiplication. As a second possibility, we can process C2

first and store the resulting matrix while calculating C1. Let maxloc C be the
biggest memory block allocated during calculation of matrix chain C. Let loc C
be the size of the resulting matrix. loc Ai = 0 for all input matrices. The minimal
memory usage for processing C1 ∗C2 is given by

maxloc C1 C2 = (21)

min{max{maxloc C1, loc C1 + maxloc C2, loc C1 + loc C2 + loc C1C2}
max{maxloc C2, loc C2 + maxloc C1, loc C1 + loc C2 + loc C1C2}}

This can be expressed by the following algebra:

Ansminmem = IN× IN× IN

minmem = (single,mult,h) where

single((r,c)) = (r,0,c)

mult((r,m,c),(r’,m’,c’)) = (r, minimum

[maximum [m,r*c+ m’,r*c + r’* c’ + r*c’],

maximum [m’,r’*c’+ m,r*c + r’* c’ + r*c’]],c’)

h([]) = []

h (l) = [minimum(l)]

4.4 Global and local similarity problems

This application has been used as a running example in Section 3. We only
recollect the results, and then proceed to the problem variations.

30 Robert Giegerich, Carsten Meyer, Peter Steffen

The alphabet A is the ASCII alphabet.

The signature

data Alignment = Nil Char |

D Char Alignment |

I Alignment Char |

R Char Alignment Char

Figure 8 shows the term representation of a global similarity candidate and
its tree representation.

candidate1 = D ’d’ (R ’a’ (I (R ’r’ (R ’l’ (R ’i’ (R ’n’ (R ’g’ (Nil

’$’) ’e’) ’n’) ’i’) ’l’) ’r’) ’i’) ’a’)

D

’d’

R

’a’

I R

’r’

R

’l’

R

’i’

R

’n’

R

’g’

Nil ’$’

’e’’n’’i’’l’’r’’i’’a’

Fig. 8. The term representation of a global similarity candidate candidate1 for
darling and airline and the tree representation of this term (lying on its side).

The evaluation algebras

The enumeration and the counting algebra

Ansenum = TAlignment Anscount = IN

enum = (nil,d,i,r,h) where count = (nil,d,i,r,h) where

nil = Nil nil(a) = 1

d = D d(x,s) = s

i = I i(s,y) = s

r = R r(a,s,b) = s

h = id h([]) = []

h([x1, . . . , xr]) = [x1 + · · ·+ xr]

The scoring algebras

Answgap = IN Ansunit = IN

wgap = (nil,d,i,r,h) where unit = (nil,d,i,r,h) where

nil(a) = 0 nil(a) = 0

d(x,s) = s + gap(x) d(x,s) = s - 1

i(s,y) = s + gap(y) i(s,y) = s - 1

r(a,s,b) = s + w(a,b) r(a,s,b) = if a==b then s + 1 else s - 1

h([]) = [] h([]) = []

h (l) = [maximum(l)] h (l) = [maximum(l)]

A Discipline of Dynamic Programming over Sequence Data 31

The prettyprinting algebra We provide a prettyprinting algebra that computes
candidates in the familiar form of two strings padded with gap symbols.

Anspretty = A∗ ×A∗

pretty = (nil,d,i,r,h) where

nil(a) = ("","")

d(x,(l,r)) = (x:l, gap:r)

i((l,r),y) = (gap:l, y:r)

r(x,(l,r),y) = (x:l,y:r)

h = id

gap = ’-’

The yield grammars

Global similarity The yield grammar describes all possible ways to transform
one string into the other by character replacement, deletion and insertion.

globsim alg = axiom alignment where

(nil, d, i, r, h) = alg

alignment = tabulated(

nil <<< char ’$’ |||

d <<< achar ~~~ alignment |||

i <<< alignment ~~~ achar |||

r <<< achar ~~~ alignment ~~~ achar ... h)

Local similarity To formulate the yield grammar for local similarity, we modify
the signature. We introduce two new operators skip left and skip right for
skipping characters in the beginning of x and y. To allow skipping at the end of
x and y, we modify the argument of Nil to be an arbitrary string, including the
separator symbol.

Strictly speaking, the skip operators should become part of the algebra. But
since they are useful for any case when going from a global to a local problem,
we assume they are predefined as shown below, and part of any algebra when
desired.
skip_right a b = a

skip_left a b = b

locsim alg = axiom skipR where

(nil, d, i, r, h) = alg

skipR = skip_right <<< skipR ~~~ achar |||

skipL ... h

skipL = skip_left <<< achar ~~~ skipL |||

alignment ... h

32 Robert Giegerich, Carsten Meyer, Peter Steffen

alignment = tabulated(

nil <<< string |||

d <<< achar ~~~ alignment |||

i <<< alignment ~~~ achar |||

r <<< achar ~~~ alignment ~~~ achar ... h)

Testing For inputs "darling" and "airline", concatenated to
z = "darling$enilria" we obtain:

globsim enum z ===> [

D’d’(D’a’(D’r’(D’l’(D’i’(D’n’(D’g’(I(I(I(I(I(I(I(Nil’$’)

’e’)’n’)’i’)’l’)’r’)’i’)’a’))))))),

D’d’(D’a’(D’r’(D’l’(D’i’(D’n’(I(D’g’(I(I(I(I(I(I(Nil’$’)

’e’)’n’)’i’)’l’)’r’)’i’))’a’)))))),

D’d’(D’a’(D’r’(D’l’(D’i’(D’n’(I(I(D’g’(I(I(I(I(I(Nil’$’)

’e’)’n’)’i’)’l’)’r’))’i’)’a’)))))),

...]

globsim pretty z ===> [

("darling-------","-------airline"),

("darlin-g------","------a-irline"),

("darlin--g-----","------ai-rline"),

...]

globsim count z ===> [48639]

globsim unit z ===> [2]

locsim enum z ===> [

Nil (7,8),

Nil (6,8),

D ’g’ (Nil (7,8)),

Nil (5,8),

D ’n’ (Nil (6,8)),

D ’n’ (D ’g’ (Nil (7,8))),

...]

locsim pretty z ===> [

("",""),

("",""),

("g","-"),

("",""),

("n","-"),

...]

locsim count z ===> [365600]

locsim unit z ===> [4]

Problem variation: Affine gap scores

A Discipline of Dynamic Programming over Sequence Data 33

In the algebras presented so far, consecutive insertions or deletions achieve
the same score as the same number of single gaps (deletions and insertions). In
order to analyze biological sequence data, it is more adequate to use an affine
gap score model. This means to assign an opening cost (open) to each gap and
an extension cost (extend) for each deleted (or inserted) character. Choosing
open > extend, this results in a better model, favoring few long gaps over many
short ones. The use of affine gap scores was introduced for biosequence analysis
in [Got82].

The signature In order to distinguish the opening of a gap and the extension
of a gap we have to extend the signature Alignment:

data Alignment = Nil Char |

D Char Alignment |

I Alignment Char |

R Char Alignment Char |

Dx Char Alignment |

Ix Alignment Char

The affine gap score algebra

Ansaffine = IN

affine = (nil,d,i,r,dx,ix,h) where

nil(a) = 0

d(x,s) = s + open + extend

i(s,y) = s + open + extend

r(a,s,b) = s + w(a,b)

dx(x,s) = s + extend

ix(s,y) = s + extend

h([]) = []

h (l) = [maximum(l)]

The yield grammar In the modified yield grammar for global similarity, we
have to distinguish the opening of a gap and the extension of a gap. Thus, our
yield grammar requires three nonterminal symbols.

affineglobsim alg = axiom alignment where

(nil, d, i, r, dx, ix, h) = alg

alignment = tabulated (

nil <<< char ’$’ |||

d <<< achar ~~~ xDel |||

i <<< xIns ~~~ achar |||

r <<< achar ~~~ alignment ~~~ achar ... h)

xDel = tabulated (

alignment |||

34 Robert Giegerich, Carsten Meyer, Peter Steffen

dx <<< achar ~~~ xDel ... h)

xIns = tabulated (

alignment |||

ix <<< xIns ~~~ achar ... h)

To achieve the yield grammar for local alignments using the affine gap score
model, the grammar for global alignments has to be modified in the same manner
as shown for the simple gap score model.

4.5 Applications of ADP in RNA structure prediction and analysis

In this section we report on applications of ADP in our work on RNA structure
prediction and analysis. We shall reformulate some early approaches in ADP,
and then outline some recent, more refined techniques, where the convenience
of the ADP approach has proved to be a major advantage. Table 4.5 gives a
preview of the problems discussed in this section.

All genetic information in living organisms is encoded in long chain molecules.
DNA is the storage form of genetic information. Its shape is always the double
helix discovered by Watson and Crick, consisting of two chain molecules that
are complementary to each other in the following sense: Each chain is a linear
arrangement of the bases Adenine, Cytosine, Guanine, and Thymine, labeled
A, C, G, T, connected by covalent bonds to a backbone built from sugar and
phosphate. Hydrogen bonds can form between A–T and C–G, creating base pairs
in the form of a densely stacked helix. The human genome consists of roughly
3× 109 such base pairs. Mathematically it is a string of length 3× 109 over the
alphabet {A, C, G, T}.

grammar problem grammar size complexity
name solved # nonterminals # tables time space

nussinov78 base pair
maximization

1 1 n3 n2

zuker81 mfe
folding

13 2 n4 n2

wuchty98 non redundant
folding

11 4 n4 n2

evers01 saturated
structures

19 9 n3 n2

pknotsRE00 chained
pseudoknots

– – n6 n4

pknotsRG03 pseudoknotted
structures

47 17 n4 n2

Table 1. Application sizes (In practice, size restrictions are imposed that reduce the
time complexity of zuker81 and wuchty98 to O(n3).)

A Discipline of Dynamic Programming over Sequence Data 35

RNA is the active form of genetic information. It is transcribed from DNA
as a chain of A, C, G and U , where U denotes Uracil, the RNA representative
of Thymine. Possible base pairs in RNA are G–C, A–U and also G–U. RNA
is typically single stranded, and by folding back onto itself, it forms structure.
One distinguishes three levels: The primary structure of an RNA molecule is
simply the string of bases. Its tertiary structure is the spatial arrangement of
its atoms. On an intermediate and more abstract level, we have the secondary
structure: The set of base pairs that a molecule forms in attaining its 3D shape.
Some RNAs are simply building plans for proteins, and their structure bears
no significance. But there are many classes of RNA whose structure determines
their function. Predicting structure given the sequence is therefore an important
task in bioinformatics.

Structure formation is driven by the forces of hydrogen bonding between base
pairs, and energetically favorable stacking of base pairs. While the prediction
of RNA tertiary structure is inaccessible to computational methods, secondary
structure can be predicted quite reliably. Figure 9 gives examples of typical
elements found in RNA secondary structure, called stacking regions (or helices),
bulge loops, internal loops, hairpin loops and multiple loops.

C

U

G
C

A

G

U
A

G

G

U U G
G

U
C C

G

C
G

C

G

U C

U
G

CU
G

C
GG

U

G
C

C G

G

A

AU

C

G

U

C

G

G

U

U

G

G

Multiple Loop

Stacking Region

Hairpin Loop

Internal Loop

Bulge Loop (left)

Bulge Loop (right)

C

C A

C

UGG
C

G
CC

G

C
G

G

G
C

C

G

A

C
G

UC

G A

CU

A G

G C
C

G

C

U

C

G
GA

A

A

C

G

G

G

G

U

A

C

C

G

C

G

U
U

C

C
C

A

C

U

A

G

G

C

G

C

C

G
G

Fig. 9. Typical elements found in RNA secondary structure

The first approach to RNA structure prediction was based on the idea of
maximizing the number of base pairs [NPGK78]. In the RNA domain, our input
sequence is a string over {A, C, G, U}. The parser achar is renamed to base.
The predicate basepairing (i, j) checks whether the bases at input positions
i + 1 and j can actually form a base pair.

36 Robert Giegerich, Carsten Meyer, Peter Steffen

The grammar nussinov78 implements the algorithm of [NPGK78], with the
evaluation algebra designed for maximizing the number of base pairs.

nussinov78 alg = axiom s where

(nil,left,right,pair,split,h) = alg

s = tabulated (

nil <<< empty |||

left <<< base ~~~ s |||

right <<< s ~~~ base |||

pair <<< base ~~~ s ~~~ base

‘with‘ basepairing |||

split <<< s ~~~ s ... h)

An enumeration algebra can be provided in the usual way, a counting alge-
bra, however, would be useless. The case analysis in the Nussinov algorithm is
redundant – even the base string ”a” is assigned the two structures

Left(’a’, Nil) and Right(Nil, ’a’)

which actually denote the same shape.
Base pair maximization ignores the favorable energy contributions from base

pair stacking, as well as the unfavorable contributions from loops. A major ad-
vance was brought about by the algorithm of Zuker and Stiegler [ZS81], which
uses experimentally determined energy parameters and solves structure predic-
tion as a problem of minimizing free energy. The grammar zuker81 implementing
this algorithm uses two tables and an algebra distinguishing 10 cases. We do not
show it here, as some details are intricate to explain. In particular, this grammar
is also ambiguous. This approach can be used to enumerate some near-optimal
structures after filtering out redundant answers.

A non-redundant algorithm was actually our first application of ADP [Gie98].
Simultaneously, the problem was also solved in the traditional way by Wuchty et
al. [WFHS99]. We show the grammar wuchty98. Here the signature has 8 opera-
tors, each one modeling a particular structure element, plus the list constructors
(nil, ul, cons) to collect sequences of components in a unique way. We use dif-
ferent choice functions (h s, h l, h) operating on them. An idea of [Gie98] was
integrated in wuchty98: Nonterminal symbol strong is used to avoid structures
with isolated (unstacked) base pairs. We know in beforehand from the energy
model that unstacked base pairs are energetically unstable. Purging them from
the search space decreases the number of candidates considerably. This gram-
mar, because of its non-ambiguity, can also be used to study combinatorics, such
as the expected number of feasible structures of a particular sequence of length
n.

wuchty98 alg = axiom struct where

(str,ss,hl,sr,bl,br,il,ml,nil,cons,ul,h,h_l,h_s) = alg

A Discipline of Dynamic Programming over Sequence Data 37

struct = str <<< comps |||

str <<< (ul <<< singlestrand) |||

str <<< (nil <<< empty) ... h_s

comps = tabulated(

cons <<< block ~~~ comps |||

ul <<< block |||

cons <<< block ~~~ (ul <<< singlestrand) ... h_l)

singlestrand = ss <<< region

block = tabulated(

strong |||

bl <<< region ~~~ strong ... h)

strong = tabulated(

(sr <<< base ~~~ (strong ||| weak) ~~~ base)

‘with‘ basepairing ... h)

weak = tabulated(

(hairpin ||| leftB ||| rightB ||| iloop ||| multiloop)

‘with‘ basepairing ... h)

where hairpin = hl <<< base ~~~ (region ‘with‘ minsize 3) ~~~ base

leftB = sr <<< base ~~~ (bl <<< region ~~~ strong) ~~~ base

rightB = sr <<< base ~~~ (br <<< strong ~~~ region) ~~~ base

multiloop = ml <<< base ~~~ (cons <<< block ~~~ comps) ~~~ base

iloop = sr <<< base ~~~ (il <<< region ~~~ strong

~~~ region) ~~~ base

The users of RNA folding programs are typically not satisfied with a single
answer, a structure of minimal free energy. They would rather see an ensemble
of near-optimal structures, sufficiently distinct to characterize what shapes a
molecule can actually attain. If there is a single predominant structure, there is
probably some biological function associated with it. If there is a large number of
different structures, all close to minimal free energy, then the molecule’s shape is
probably undefined and meaningless. Finally, there are rare and interesting cases
of exactly two near-optimal structures, where the molecule may act as a confor-
mational switch. Computing exactly the characteristic ensemble of structures is
still an unsolved problem.

Following the incentive to reduce the search space without losing interesting
structures, D. Evers developed an ADP grammar describing the class of satu-
rated structures – those whose helices have maximal extent under the rules of
base pairing. This fairly sophisticated grammar requires 19 nonterminals and 9
tables; it requires some advanced techniques that nicely fit in the ADP frame-
work. For example, evaluation functions need to compute auxiliary information
in addition to energy values, hence we use different answer types and differ-
ent choice functions operating on them. The grammar evers01 can be found in
[Eve03], the traditional recurrences are given in [EG01]. Although published first,
they were actually derived from the ADP grammar. This problem of saturated
folding was already posed by Sankoff in 1984 [ZS84]; a look at the recurrences
in [EG01] explains why it required the help of a formal method to be solved.

Another problem currently in focus is the folding of structures containing
pseudoknots. All the structures discussed previously can be seen as strings of



38 Robert Giegerich, Carsten Meyer, Peter Steffen

properly nested parentheses, e.g. . . . (((. . . ) . . . )) . . . (. . . ) . . . , where matching
parentheses denote base pairs, and dots denote unpaired bases. Pseudoknots con-
tain base pairs that interact in a crosswise fashion, like in . . . (((. . . [[[. . . ))) . . . ]]] . . . .
Finding the optimal, potentially pseudoknotted structure under the current en-
ergy model has been proven to be an NP-complete problem [Aku00]. Rivas and
Eddy developed an algorithm pknotsRE [RE98] that solves this problem for a
restricted class of pseudoknots, running in O(n6) time and O(n4) space. In spite
of its high computational effort it is actually used in practice. However, there
lies a touch of tragedy in this algorithm: In theory, it can recognize quite sophis-
ticated structures containing chains of pseudoknots – however, such structures
require a molecule of a certain minimal size, clearly longer than the algorithm
can handle in practice. Hence, it will never fulfill its promise.

As a reaction to this situation, we have developed a folding algorithm for
the more restricted, but still useful class of “canonical simple recursive pseu-
doknots”. This program pknotsRG is our largest ADP grammar so far, using
47 nonterminals, 140 alternatives, and 17 tables. Its complexity is O(n4) time
and O(n2) space. Its implementation in compiled Haskell runs on the Bielefeld
Bioinformatics Server, used by the bioinformatics community. It can handle se-
quences of up to 400 bases within 77 minutes, and is currently the only program
to solve folding problems of this size. A description of this program is published
in [SKM+03].

4.6 Summary of Section 4

We hope that, by the series of examples treated in this section, we have convinced
the reader that using the ADP framework is an aid rather than a formal obstacle
to designing dynamic programming algorithms. Often the grammar design is the
most difficult part; by using the enumeration algebra, we can check this design
before we apply any scoring algebras. The ease of replacing one scoring algebra
by another is quite useful in a design phase where the adequate modeling of
the problem domain is not yet totally clear. We also hope to have shown that
this design method can be used without worrying about implementation details.
These will be provided in the next section, while readers mainly interested in
methodology may skip ahead to the conclusion.

5 Three ways to implement ADP

In this section we show three ways to make ADP algorithms actually run. The
most convenient one is the embedding of ADP in Haskell. Here the ADP algo-
rithm can be executed as is. Advocates of imperative programming are provided
with translation schemes that lead from the yield grammar to the traditional
DP recurrences, to be implemented in C or FORTRAN. This transition, when
done by hand, is quite cumbersome. It is rewarded by better runtime (by a con-
stant factor) and an imperative implementation that can be tested against the
same algorithm executed via the Haskell embedding. Eventually, this transition



A Discipline of Dynamic Programming over Sequence Data 39

should be automated, and to this end, we report on an ADP compiler project
currently under way.

5.1 Unifying single sequence analysis and pairwise sequence
comparison

We have been considering two kinds of problems: In El Mamun’s and in the
matrix chain problem, the task was to recover an internal structure of a single
sequence x. A candidate t for x has yield(t) = x. In the similarity problem, we are
comparing two sequences x and y. We saw that here a candidate t for inputs x, y
has yield(t) = xy−1. If we choose to include a separator symbol $ between x and
the reverse of y, we have yield(t) = x$y−1. This is a matter of convenience. To
unify both cases, in the sequel we assume we have a single input z, where either
z = x or z = xy−1, or z = x$y−1. We assume that z, m = |x|, n = |y|, l = |z|
are known and represented by global variables. Thus, in the pairwise case, even
when we do not use the separator symbol, we know the boundary between x and
y−1 in z.

This input convention is used for the sake of a uniform treatment here. In our
practical work, we use a special version of the yield parser for the pairwise case,
which explicitly reads from two inputs in forward direction. (See ADP website
for details.)

Since z is global, a subword zi+1, ..., zj of z is simply represented by the
subscript pair (i,j). Note that i marks the subscript position before the first
character of subword (i, j). This convention allows one to use k as the common
boundary of adjacent subwords when splitting (i, j) into (i, k) and (k, j).

5.2 Embedding ADP in Haskell

ADP has been designed as a domain specific language embedded in Haskell
[PJ03]. An algorithm written in ADP notation can be directly executed as a
Haskell program. Of course, this requires that the functions of the evaluation
algebra are coded in Haskell. A smooth embedding is achieved by adapting the
technique of parser combinators [Hut92], which literally turn the grammar into a
parser. Hutton’s technique applies to context free grammars and string parsing.
We need to introduce suitable combinator definitions for yield parsing, and add
tabulation.

Generally, a parser is a function that, given a subword of the input, returns
a list of all its parses.

Lexical parsers The lexical parser achar recognizes any single character except
the separator symbol. Parser string recognizes a (possibly empty) subword.
Specific characters or symbols are recognized by char and symbol. Parser empty
recognizes the empty subword.

> type Subword = (Int,Int)



40 Robert Giegerich, Carsten Meyer, Peter Steffen

> type Parser b = Subword -> [b]

> empty :: Parser ()

> empty (i,j) = [() | i == j]

> achar :: Parser Char

> achar (i,j) = [z!j | i+1 == j, z!j /= ’$’]

> char :: Char -> Parser Char

> char c (i,j) = [c | i+1 == j, z!j == c]

> string :: Parser Subword

> string (i,j) = [(i,j) | i <= j]

> symbol :: String -> Parser Subword

> symbol s (i,j) = [(i,j)| and [z!(i+k) == s!!(k-1) | k <-[1..(j-i)]]

Nonterminal parsers The nonterminal symbols in the grammar are inter-
preted as parsers, with the productions serving as their mutually recursive def-
initions. Each righthand side is an expression that combines parsers using the
parser combinators.

Parser combinators The operators introduced in the ADP notation are now
defined as parser combinators: ||| concatenates result lists of alternative parses,
<<< grabs the results of subsequent parsers connected via ~~~ and successively
“pipes” them into the algebra function on its left. Combinator ... applies the
objective function to a list of answers.

> infixr 6 |||

> (|||) :: Parser b -> Parser b -> Parser b

> (|||) r q (i,j) = r (i,j) ++ q (i,j)

> infix 8 <<<

> (<<<) :: (b -> c) -> Parser b -> Parser c

> (<<<) f q (i,j) = map f (q (i,j))

> infixl 7 ~~~

> (~~~) :: Parser (b -> c) -> Parser b -> Parser c

> (~~~) r q (i,j) = [f y | k <- [i..j], f <- r (i,k), y <- q (k,j)]

> infix 5 ...

> (...) :: Parser b -> ([b] -> [b]) -> Parser b

> (...) r h (i,j) = h (r (i,j))

Note that the operator priorities are defined such that an expression f <<< a
~~~ b ~~~ c is read as ((f <<< a) ~~~ b) ~~~ c. This makes use of curried
functions: the results of parser f <<< a are functions – i. e. calls to f with (only)
the first argument bound.

A Discipline of Dynamic Programming over Sequence Data 41

The operational meaning of a with-clause can be defined by turning with
into a combinator, this time combining a parser with a filter. Finally, the keyword
axiom of the grammar is interpreted as a function that returns all parses for the
specified nonterminal symbol and the complete input.

> type Filter = Subword -> Bool

> with :: Parser b -> Filter -> Parser b

> with q c (i,j) = if c (i,j) then q (i,j) else []

> axiom :: Parser b -> [b]

> axiom ax = ax (0,l)

When a parser is called with the enumeration algebra – i.e. the functions
applied are actually tree constructors, and the objective function is the identity
function – then it behaves like a proper yield parser and generates a list of trees
according to Definition 4. However, called with some other evaluation algebra,
it computes any desired type of answer.

Tabulation Adding tabulation is merely a change of data type, replacing a
recursive function by a recursively defined table – just in the way we did this
in Section 2.4. Now we need a general scheme for this purpose: The function
table records the results of a parser p for all subwords of an input of size n, and
returns as its result a function that does lookup in this table. Note the essential
invariance (table n f)!(i,j) = f(i,j). Therefore, table n p is a tabulated
parser, that can be used in place of parser p. In contrast to the latter, it does
not compute the results for the same subword (i,j) repeatedly – here we enjoy
the blessings of lazy evaluation and avoid exponential explosion.

The keyword tabulated is now defined as table bound to the global variable
l, the length of the input.

> table :: Int -> Parser b -> Parser b

> table n p = (!) (array ((0,0),(n,n))

> [((i,j), p (i,j)) | i<- [0..n], j<- [i..n]])

> tabulated = table l

Removing futile computations Consider the production a = f <<< a ~~~
char. Our definition of the ~~~ combinator splits subword (i, j) in all possible
ways, including empty subwords on either side. Obviously, achar, which recog-
nizes a single character, has a fixed yield size of 1, leaving the subword (i, j− 1)
for the yield of nonterminal symbol a. In this case, iteration over all splits of
(i, j) into (i, k) and (k, j) is mathematically correct, but a futile effort. The only
successful split can be (i, j−1) and (j−1, j). What is worse, since the production
is left-recursive, the last split considered without need is (i, j) and (j, j), which
leads to infinite recursion.

42 Robert Giegerich, Carsten Meyer, Peter Steffen

Both situations are avoided by using specializations of the ~~~ combinator
that are aware of bounded yield sizes and avoid unnecessary splits. For the case
of splitting off a single character, we use -~~ and ~~-, while the fully general
case of an arbitrary, but known yield size limit is treated by the ~~ combinator.

> infixl 7 ~~,-~~ , ~~-

> (-~~) q r (i,j) = [x y | i<j, x <- q (i,i+1), y <- r (i+1,j)]

> (~~-) q r (i,j) = [x y | i<j, x <- q (i,j-1), y <- r (j-1,j)]

> (~~) :: (Int,Int) -> (Int,Int)

> -> Parser (b -> c) -> Parser b -> Parser c

> (~~) (l,u) (l’,u’) r q (i,j)

> = [x y | k <- [max (i+l) (j-u’) .. min (i+u) (j-l’)],

> x <- r (i,k), y <- q (k,j)]

These combinators are used in asymptotic efficiency tuning via width re-
duction as described in [GM02]. Using these special cases, our global similarity
grammar can be written in the form

> globsim alg = axiom alignment where

> (nil, d, i, r, h) = alg

> alignment = tabulated(

> nil <<< char ’$’ |||

> d <<< achar -~~ alignment |||

> i <<< alignment ~~- achar |||

> r <<< achar -~~ alignment ~~- achar ... h)

which now, as a functional program, has the appropriate efficiency of O(mn).

5.3 Derivation of explicit recurrences

In the previous section we showed how to embed an ADP algorithm smoothly
in a functional language. Although efficient implementations of Haskell exist, it
still seems desirable to derive an imperative version of the algorithm. The sheer
volume of data present in many dynamic programming domains and an easy
integration in existing systems are two of the reasons. The classical approach in
dynamic programming is to implement the imperative version of the algorithm
starting from the matrix recurrences derived by experience or intuition. In this
section we show how to derive the recurrences in a systematic way from an
algorithm in ADP notation.

Each tabulated production will result in a matrix recurrence relation. The
definitions of non tabulated productions can be inserted directly at the occur-
rences of the corresponding nonterminal symbols in the grammar. In the follow-
ing, we assume that all productions are tabulated.

A Discipline of Dynamic Programming over Sequence Data 43

Translation schemes The matrix recurrences for a grammar G can be derived
by the following translation patterns starting with C[[G]] in Pattern 22. We use
list comprehension notation, in analogy to set notation: [f(x, y)|x ∈ xs, y ∈ ys]
denotes the list of all values f(x, y) such that x is from list xs and y from
list ys. To distinguish a parser call q(i, j) from a semantically equivalent table
lookup, we denote the latter by q!(i, j). The function pair (low(p), up(p)) shall
provide the yield size of a tree pattern p and is defined by (low(p), up(p)) =
(infq∈L(p) |q|, supq∈L(p) |q|) if L(p) 6= ∅, and (low(p), up(p)) = (∞, 0) otherwise.

C[[grammar alg = axiom p where v1 = q1 ... vm = qm]] = (22)
for j = 0 to l

for i = 0 to j

v1!(i, j) = C[[q1]](i, j)...
vm!(i, j) = C[[qm]](i, j)

return p!(0, l)
C[[q ... h]](i, j) = h(C[[q]](i, j)) (23)
C[[q1 ||| ... ||| qr]](i, j) = C[[q1]](i, j) ++ ... ++ C[[qr]](i, j) (24)
C[[t <<< q1 ~~~ ... ~~~ qr]](i, j) = (25)

[t(p1, ..., pr)|p1 ∈ C[[q1]](i, k1), ..., pr ∈ C[[qr]](kr−1, j)]
for k1, ..., kr−1, such that k0 = i, kr = j,

max(kl−1 + low(ql), kl+1 − up(ql+1)) ≤ kl ≤
min(kl−1 + up(ql), kl+1 − low(ql+1))

C[[q with c]](i, j) = if c(i, j) then C[[q]](i, j) else [] (26)
C[[v]](i, j) = v!(i, j) for v ∈ V (27)
C[[t]](i, j) = T [[t]](i, j) for t terminal (28)

In Pattern 25, note the direct correspondence to the definition of the ~~
combinator in Section 5.2.

Translation patterns T [[w]] for terminal symbols must be chosen according to
their respective semantics. We give three examples:

T [[char c]](i, j) = if i + 1 ≡ j ∧ zj ≡ c then [c] else []
T [[achar]](i, j) = if i + 1 ≡ j ∧ zj 6= ′$′ then [zj] else []
T [[string]](i, j) = if i ≤ j then [(i, j)] else []

Example We demonstrate the translation for the global similarity example of
Section 4.4:

globsim alg = axiom alignment where

(nil, d, i, r, h) = alg

alignment = nil <<< char ’$’ |||

44 Robert Giegerich, Carsten Meyer, Peter Steffen

d <<< achar ~~~ alignment |||

i <<< alignment ~~~ achar |||

r <<< achar ~~~ alignment ~~~ achar ... h

Applying Pattern 22 to this grammar provides the framework of the control
structure:

for j = 0 to l

for i = 0 to j

alignment!(i, j) = C[[nil <<< ...]](i, j)
return alignment!(0, l)

Starting with alignment!(i, j) = C[[nil <<< ...]](i, j) we apply Patterns 23
and 24 to the righthand side of the production:

alignment!(i, j) = h(
C[[nil <<< char ’$’]](i, j) ++ (29)
C[[d <<< achar ~~~ alignment]](i, j) ++ (30)
C[[i <<< alignment ~~~ achar]](i, j) ++ (31)
C[[r <<< achar ~~~ alignment ~~~ achar]](i, j)) (32)

The resulting four expressions can be translated separately according to Pat-
tern 25. Expression 29 translates to:

[nil(p1)|p1 ∈ T [[char ’$’]](i, j)]
= if i + 1 ≡ j ∧ zj ≡ ′$′ then [nil(′$′)] else []

Translation of Expressions 30 – 32 makes use of the yield size functions low
and up. Table 2 shows their values for the expressions needed in this example.
The constant yield sizes of the terminal symbols can be taken directly from the
corresponding parser definitions. For nonterminal symbols and arbitrary expres-
sions this requires a deeper analysis of the grammar. This is detailed in [GS02].
Accepting the risk of ending up with suboptimal code for the resulting matrix
recurrences, a yield size (0,∞) is always a safe approximation.

x (low(x), up(x))

char c (1, 1)
achar (1, 1)

alignment (1,∞)

Table 2. Yield sizes needed for alignment example

A Discipline of Dynamic Programming over Sequence Data 45

Proceeding with Expression 30 leads to the following calculation:

C[[d <<< achar ~~~ alignment]](i, j)
= [d(p1, p2)|p1 ∈ T [[achar]](i, k1), p2 ∈ C[[alignment]](k1, j)]

for k1 such that
max(i + low(achar), j − up(alignment)) ≤ k1 ≤
min(i + up(achar), j − low(alignment))

With yield sizes (1, 1) and (1,∞) for achar and alignment the loop variable
k1 simplifies to a constant k1 = i + 1 and the condition i + 2 ≤ j:

[d(p1, p2)|i + 2 ≤ j, p1 ∈ T [[achar]](i, i + 1), p2 ∈ C[[alignment]](i + 1, j)]
= [d(p1, p2)|i + 2 ≤ j ∧ zi+1 6= ′$′, p1 ∈ [zi+1], p2 ∈ alignment!(i + 1, j)]
= [d(zi+1, p2)|i + 2 ≤ j ∧ zi+1 6= ′$′, p2 ∈ alignment!(i + 1, j)]

Translating Expressions 31 and 32 in the same way we arrive at the following
recurrence relation for the matrix alignment:

alignment!(i, j) = h((33)
if i + 1 ≡ j ∧ zj ≡ ′$′ then [nil(′$′)] else [] ++
[d(zi+1, p2)|i + 2 ≤ j ∧ zi+1 6= ′$′, p2 ∈ alignment!(i + 1, j)] ++
[i(p1, zj)|i + 2 ≤ j ∧ zj 6= ′$′, p1 ∈ alignment!(i, j − 1)] ++
[r(zi+1, p2, zj)|i + 3 ≤ j ∧ zi+1 6= ′$′ ∧ zj 6= ′$′,

p2 ∈ alignment!(i + 1, j − 1)])

The explicit recurrences derived so far can be used together with code imple-
menting the functions of an arbitrary evaluation algebra. If this code is simple,
it can be inlined, which often allows further simplification of the recurrences.

Inlining evaluation algebras We demonstrate inlining by means of the count
algebra and the unit cost algebra introduced in Section 4.4:

Anscount = IN Ansunit = IN

count = (nil,d,i,r,h) where unit = (nil,d,i,r,h) where

nil(x) = 1 nil(x) = 0

d(x,s) = s d(x,s) = s - 1

i(s,y) = s i(s,y) = s - 1

r(a,s,b) = s r(a,s,b) = if a==b then s + 1 else s - 1

h([]) = [] h([]) = []

h([x1, . . . , xr]) = [x1 + · · ·+ xr] h (l) = [maximum(l)]

46 Robert Giegerich, Carsten Meyer, Peter Steffen

For the counting algebra this results in the following recurrence for the matrix
alignment:

alignment!(i, j) =
(if i + 1 ≡ j ∧ zj ≡ ′$′ then 1 else 0)+
(if i + 2 ≤ j ∧ zi+1 6= ′$′ then alignment!(i + 1, j) else 0)+
(if i + 2 ≤ j ∧ zj 6= ′$′ then alignment!(i, j − 1) else 0)+
(if i + 3 ≤ j ∧ zi+1 6= ′$′ ∧ zj 6= ′$′ then alignment!(i + 1, j − 1) else 0)

And for the unit cost algebra:

alignment!(i, j) = max(
(if i + 1 ≡ j ∧ zj ≡ ′$′ then [0] else []) ++
(if i + 2 ≤ j ∧ zi+1 6= ′$′ then [alignment!(i + 1, j)− 1] else []) ++
(if i + 2 ≤ j ∧ zj 6= ′$′ then [alignment!(i, j − 1)− 1] else []) ++
(if i + 3 ≤ j ∧ zi+1 6= ′$′ ∧ zj 6= ′$′ then [if zi+1 ≡ zj

then alignment!(i + 1, j − 1) + 1
else alignment!(i + 1, j − 1)− 1] else []))

Solving dependencies Consider the example of string similarity. By adding
the production

loc_align = alignment |||

skip_right <<< loc_align ~~~ achar |||

skip_left <<< achar ~~~ loc_align ... h

we can extend the algorithm for global similarity to an algorithm for local sim-
ilarity. (Here we use a single production rather than two as in Section 4.4, to
shorten the translation example.) Following the translation scheme of the previ-
ous paragraphs we derive the matrix recurrence for loc align:

loc align!(i, j) = max(
[alignment!(i, j)] ++
(if i + 2 ≤ j ∧ zj 6= ′$′ then [loc align!(i, j − 1)] else []) ++
(if i + 2 ≤ j ∧ zi+1 6= ′$′ then [loc align!(i + 1, j)] else []))

The dependency between loc align!(i, j) and alignment!(i, j) leads us to a
new issue not present in the functional version of the algorithm. Functional lan-
guages are data-driven, so in the functional implementation of the algorithm
the computational model of the programming language guarantees that all com-
putations are made on demand. Since we cannot assume this in an imperative
setting, we have to find a suitable ordering of calculations, so that all dependen-
cies are solved and all values are calculated before they are used. For the small

A Discipline of Dynamic Programming over Sequence Data 47

example shown here this is an easy task. But consider an algorithm with about
20 productions and various dependencies between them. Finding a suitable order
of calculation is a strenuous and error-prone venture. Solving this problem is one
of the tasks of the compiler described in the next section.

5.4 Compiling ADP notation to C

In the previous section we showed how to derive the traditional recurrences in a
systematic way, as an intermediate step towards an implementation of an ADP
algorithm in an imperative programming language, such as C. The C program
can be tested systematically against the Haskell prototype, a procedure that
guarantees much higher reliability than ad-hoc testing. Still, the main difficulties
with this approach are twofold: It proves to be time consuming to produce a C
program by hand that is equivalent to the Haskell prototype. Furthermore, for
sake of efficiency, developers are tempted to perform ad-hoc yield size analysis
and use special combinators in the prototype. This introduces through the back
door the possibility of subscript errors otherwise banned by the ADP approach.
The ADP compiler currently under development eliminates both problems.

Aside from parsing the ADP program and producing C code, the core of
the compiler implements yield size and dependency analysis, and performs the
translation steps described in the previous section. With respect to the evalua-
tion algebra we follow the strategy that simple arithmetic functions are inlined,
while others must be provided as native C functions. Compiler options provide a
simplified translation in the case where the evaluation algebra computes scalar
answers rather than lists. As an example, the code produced for the grammar
globsim is shown in Figure 10.

We also added a source-to-source option to the compiler, reproducing ADP
input with all ~~~ operators replaced by variants bound to exact yield sizes.
Hence, the program designer using the functional embedding is no longer com-
mitted to delicate tuning efforts.

The compiler, at the time of this writing, successfully handles the simple
examples presented in this article. However, it is not yet complete, as there
are some more ambitious goals to persue, such as automating the efficiency
annotation.

6 Conclusion

6.1 Review of the ADP development method

The systematic method of program development in the ADP framework was
specified rather rigidly in Section 4. It comprises the steps A – Σ – E – G,
named after the four main constituents of ADP. We discuss the experiences with
the use of this method, some of which we hope to have already conveyed to the
reader.

In the design of the signature Σ, we perform the fundamental case analysis
of our problem domain. This records all the details that may be entering our

48 Robert Giegerich, Carsten Meyer, Peter Steffen

void calc alignment(int i, int j)

{
int v1, v2, v3, v4, v5, v6, v7;

if ((j-i) == 1) { /* nil <<< (char ’$’) */

if (z[j] == ’$’) {
v1 = 0;

} else { v1 = MINVAL; }
} else { v1 = MINVAL; }

if ((j-i) >= 2) { /* d <<< achar ~~~ p alignment */

if (z[i+1] != ’$’) {
v2 = tbl alignment[i+1][j-(i+1)-1] + gap(z[i+1]);

} else { v2 = MINVAL; }
} else { v2 = MINVAL; }

if ((j-i) >= 2) { /* i <<< p alignment ~~~ achar */

if (z[j] != ’$’) {
v3 = tbl alignment[i][j-1-i-1] + gap(z[j]);

} else { v3 = MINVAL; }
} else { v3 = MINVAL; }

if ((j-i) >= 3) { /* r <<< achar ~~~ p alignment ~~~ achar */

if ((z[i+1] != ’$’) && (z[j] != ’$’)) {
v4 = tbl alignment[i+1][j-1-(i+1)-1] + w(z[i+1], z[j]);

} else { v4 = MINVAL; }
} else { v4 = MINVAL; }

v5 = v3 > v4 ? v3 : v4;

v6 = v2 > v5 ? v2 : v5;

v7 = v1 > v6 ? v1 : v6;

if ((j-i) >= 1) { tbl alignment[i][j-i-1] = v7; }
}

void mainloop()

{
int i, j;

for (j=0; j<=n; j++)

for (i=j; i>=0; i--)

calc alignment(i, j);

printf("%d", tbl alignment[0][n-0-1]);

}

Fig. 10. C-Code produced by the ADP compiler for grammar globsim with algebra
wgap

A Discipline of Dynamic Programming over Sequence Data 49

objective of optimization. Describing all evaluation algebras E as Σ-algebras
makes sure that they all are homomorphic images of the enumeration algebra TΣ .
This has two major methodical benefits. First, Definition 6 formulates the proof
obligation that must be met to show that a particular evaluation algebra satisfies
Bellman’s Principle. Second, it assures that various evaluation algebras work
correctly with the same algorithm, as all aspects of evaluation are encapsulated
within the algebras.

In the design of the grammar, we concentrate exclusively on the top-down
problem decomposition. Different types of sub-problems are cast as different
nonterminals, while their potential evaluation is restricted to the operators pro-
vided by Σ. There is no chance to include ad-hoc aspects of evaluation into the
grammar.

Not even the most systematic development makes testing superfluous. In our
case, testing is greatly aided by the enumeration, counting and prettyprinting
algebras. The use of the enumeration algebra enables inspection of the search
space actually traversed by the algorithm. The counting algebra sometimes indi-
cates that the search space of the program is much larger than we would expect
- in this case the grammar contains redundancies which we may not have cho-
sen consciously, and whose avoidance is essential if we are also interested in
near-optimal solutions.

The beneficial use of several algebras has led us to introducing a product op-
eration on algebras, denoted ***. The product algebra (alg1 *** alg2) simply
operates on pairs of answer values. However, the product of the choice functions
is defined in a nontrivial way, leading to a number of interesting properties that
are outside the scope of the present paper. For example, if opt is an optimizing
evaluation algebra, then (opt *** count) gives us the count of co-optimal so-
lutions together with the optimal score, (opt *** enum) or (opt *** pretty)
gives us the optimal candidate together with its score. Using a second table en-
try, we get backtracing for free. And there is more flexibility, as algebra products
may be nested.

Altogether, our experience is that the ADP framework leads to a produc-
tive and rewarding reconciliation of mathematical rigor with the programmer’s
intuition about dynamic programming.

All the elements of methodical guidance available heretofore [CLR90,Sch01]
re-appear in our framework, often in a more rigorous fashion. There is only one
major point where ADP re-adjusts the classical view: Cormen et al. advocate,
as the initial step, the study of how the structure of an optimal problem solution
is composed from its subproblems. In the light of ADP, this is misleading: The
structure of a solution guides its evaluation, but does not determine its opti-
mality. Optimality is solely in the eye of the evaluation algebra – change the
algebra, and a different structure will be found to be optimal. The structure of
all solutions in the search space, optimal or not, is defined by the grammar. The
classical view certainly implies this. However, it can not formulate it adequately,
as the notion of an explicit representation of candidates is lacking.

50 Robert Giegerich, Carsten Meyer, Peter Steffen

6.2 Extensions in theory and practice

Dynamic programmers have discovered many tricks that improve the efficiency of
a DP algorithm. In the ADP framework, many such tricks turn into techniques,
which can be formalized as transformation schemes on grammars and algebras,
can be taught and re-used. This aspect is elaborated in [GM02]. Interestingly,
the transition from a global to a local optimization problem (as in our string
comparison example) is such a transformation. Once the global problem has been
solved, its local version comes (intellectually) for free.

We have occasionally touched upon the case where one is interested in more
than a single answer. One may ask for all co-optimal answers, or all near-optimal
answers within a certain threshold of optimality. In such a context, the redun-
dancy or ambiguity of the grammar must be understood and controlled. This is a
nontrivial issue studied in [Gie00b]. A general technique to enumerate solutions
in order of optimality is described in [GM02].

In non-trivial examples, it often occurs that different types of subproblems
have different types of answers. This leads to the use of many-sorted evaluation
algebras, where a separate choice function is associated with each sort of answer.
A case in point is the grammar wuchty98. There is no theoretical difficulty
associated with this extension.

6.3 Future work

In our practical work, we have used several techniques that have not yet been
studied theoretically, such as attributes associated with nonterminals of the tree
grammar, or parsers that rely on precomputed information. While the Haskell
embedding of ADP is a convenient test bed for such ideas, their adequate inte-
gration in the theoretical framework is not obvious. When teaching ADP to our
students, we strictly discourage ad-hoc extensions borrowed from the Haskell
background.

Moving on from sequences to more structured data such as trees or two
dimensional images, the new technical problem is to provide a suitable tabulation
method. To this end, we are currently studying local similarity problems on trees
[HTGK03].

An interesting extension in the realm of sequential data is to consider lan-
guage intersection and complement. We may allow productions with and and
butnot operators, written u = v &&& z and u = v --- z. The former means
that an input string can be reduced to u if it can be reduced to both v and z.
The latter means that it can be reduced to u if it can be reduced to v, but not to
z. While this clearly extends beyond the realm of context free yield languages,
it is easy to implement in the parser, and quite useful in describing complicated
pattern matching applications.

The most urgent task we are pursuing at the time of this writing is the
formal definition of an ADP language version 1.0, and the completion of the
compiler. The Haskell embedding is easy to use, and efficient enough for many
realistic applications when using the Glasgow Haskell compiler GHC. Functional

A Discipline of Dynamic Programming over Sequence Data 51

programming and Haskell are quite popular in the computer science community
today, but not so in biology and bioinformatics. Understanding and even de-
veloping an algorithm written in ADP notation does not require any Haskell
expertise – it can be based solely on the notion of yield grammars, evaluation
algebras, and ADP notation. However, in the case of an – albeit trivial – error,
the programmer is confronted with the error handling of the underlying language
system, which is not aware of the ADP concepts. Hence, the current dependence
on Haskell is a severe limitation in the application field for which ADP was
originally developed.

6.4 Acknowledgements

Many people have contributed to the development of the ADP approach by
profound discussion, critical comments, and application challenges. We acknowl-
edge the contributions of Dirk Evers, Matthias Höchsmann, Stefan Kurtz, Enno
Ohlebusch, Jens Reeder, and Marc Rehmsmeier. Morris Michael has compiled
the ADP web site, where the reader is welcome to experiment with ADP in an
interactive fashion. It can found in the education department of the Bielefeld
Bioinformatics Webserver at http://bibiserv.techfak.uni-bielefeld.de/.

References

[AHU83] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algo-
rithms. Addison-Wesley, Reading, MA, USA, 1983.

[Aku00] T. Akutsu. Dynamic programming algorithms for RNA secondary structure
prediction with pseudoknots. Discr. Appl. Math., 104:45–62, 2000.

[BB88] G. Brassard and P. Bratley. Algorithmics: Theory and Practice. Prentice-
Hall, 1988.

[BD62] R. Bellman and S.E. Dreyfus. Applied Dynamic Programming. Princeton
University Press, 1962.

[Bel57] R. Bellman. Dynamic Programming. Princeton University Press, 1957.
[BM93] R. S. Bird and O. de Moor. From dynamic programming to greedy algo-

rithms. In B. Möller, editor, State-of-the-Art Seminar on Formal Program
Development. Springer LNCS 755, 1993.

[BM97] R. S. Bird and O. de Moor. Algebra of Programming. Prentice Hall, 1997.
[Bra69] W. S. Brainerd. Tree generating regular systems. Information and Control,

14:217–231, 1969.
[CLR90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms.

MIT Press, Cambridge, MA, 1990.
[Cur97] S. Curtis. Dynamic programming: A different perspective. In R. Bird

and L. Meertens, editors, Algorithmic Languages and Calculi, pages 1–23.
Chapman & Hall, London, U.K., 1997.

[DEKM98] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence
Analysis. Cambridge University Press, 1998.

[EG01] D. Evers and R. Giegerich. Reducing the conformation space in RNA struc-
ture prediction. In German Conference on Bioinformatics, 2001.

[Eve03] D. Evers. RNA Folding via Algebraic Dynamic Programming. PhD thesis,
Faculty of Technology, Bielefeld University, 2003.

52 Robert Giegerich, Carsten Meyer, Peter Steffen

[Gie98] R. Giegerich. A declarative approach to the development of dynamic pro-
gramming algorithms, applied to RNA folding. Report 98–02, Technische
Fakultät, Universität Bielefeld, 1998.

[Gie00a] R. Giegerich. A Systematic Approach to Dynamic Programming in Bioin-
formatics. Bioinformatics, 16:665–677, 2000.

[Gie00b] R. Giegerich. Explaining and controlling ambiguity in dynamic program-
ming. In Proc. Combinatorial Pattern Matching, pages 46–59. Springer
LNCS 1848, 2000.

[GKW99] R. Giegerich, S. Kurtz, and G. F. Weiller. An algebraic dynamic program-
ming approach to the analysis of recombinant DNA sequences. In Proc.
of the First Workshop on Algorithmic Aspects of Advanced Programming
Languages, pages 77–88, 1999.

[GM02] R. Giegerich and C. Meyer. Algebraic Dynamic Programming. In Hélène
Kirchner and Christophe Ringeissen, editors, Algebraic Methodology And
Software Technology, 9th International Conference, AMAST 2002, pages
349–364. Springer LNCS 2422, 2002.

[Got82] O. Gotoh. An improved algorithm for matching biological sequences. J.
Mol. Biol., 162:705–708, 1982.

[GS88] R. Giegerich and K. Schmal. Code selection techniques: Pattern matching,
tree parsing and inversion of derivors. In Proc. European Symposium on
Programming 1988, pages 247–268. Springer LNCS 300, 1988.

[GS02] R. Giegerich and P. Steffen. Implementing algebraic dynamic programming
in the functional and the imperative programming paradigm. In E.A. Boiten
and B. Möller, editors, Mathematics of Program Construction, pages 1–20.
Springer LNCS 2386, 2002.

[Gus97] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge Uni-
versity Press, 1997.

[HTGK03] M. Höchsmann, T. Töller, R. Giegerich, and S. Kurtz. Local similarity
in RNA secondary structures. In Proceedings of the IEEE Bioinformatics
Conference (CSB), pages 159–168, 2003.

[Hut92] G. Hutton. Higher order functions for parsing. Journal of Functional Pro-
gramming, 3(2):323–343, 1992.

[Meh84] K. Mehlhorn. Data structures and algorithms. Springer Verlag, 1984.
[MG02] C. Meyer and R. Giegerich. Matching and Significance Evaluation of Com-

bined Sequence-Structure Motifs in RNA. Z.Phys.Chem., 216:193–216,
2002.

[Mit64] L. Mitten. Composition principles for the synthesis of optimal multi-stage
processes. Operations Research, 12:610–619, 1964.

[Moo99] O. de Moor. Dynamic Programming as a Software Component. In M. Mas-
torakis, editor, Proceedings of CSCC, July 4-8, Athens. WSES Press, 1999.

[Mor82] T. L. Morin. Monotonicity and the principle of optimality. Journal of
Mathematical Analysis and Applications, 86:665–674, 1982.

[NPGK78] R. Nussinov, G. Pieczenik, J.R. Griggs, and D.J. Kleitman. Algorithms for
loop matchings. SIAM J. Appl. Math., 35:68–82, 1978.

[PJ03] S. Peyton Jones, editor. Haskell 98 Language and Libraries – The Revised
Report. Cambridge University Press, April 2003.

[RE98] E. Rivas and S. Eddy. A dynamic programming algorithm for RNA pseu-
doknots. In Poster Presentation, ISMB98, 1998.

[Sch01] U. Schöning. Algorithmik. Spektrum Akad. Verl., Heidelberg, 2001.
[Sed89] R. Sedgewick. Algorithms. Addison-Wesley, 2nd edition, 1989.

A Discipline of Dynamic Programming over Sequence Data 53

[SKM+03] A. Sczyrba, J. Krüger, H. Mersch, S. Kurtz, and R. Giegerich. RNA-related
tools on the Bielefeld Bioinformatics Server. Nucl. Acids. Res., 31(13):3767–
3770, 2003.

[Sni92] M. Sniedovich. Dynamic Programming. Marcel Dekker, 1992.
[SW81] T. F. Smith and M. S. Waterman. The identification of common molecular

subsequences. J. Mol. Biol., 147:195–197, 1981.
[WFHS99] S. Wuchty, W. Fontana, I. L. Hofacker, and P. Schuster. Complete subopti-

mal folding of RNA and the stability of secondary structures. Biopolymers,
49:145–165, 1999.

[ZS81] M. Zuker and P. Stiegler. Optimal computer folding of large RNA se-
quences using thermodynamics and auxiliary information. Nucleic Acids
Res., 9(1):133–148, 1981.

[ZS84] M. Zuker and S. Sankoff. RNA secondary structures and their prediction.
Bull. Math. Biol., 46:591–621, 1984.

