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1 Introduction 
 
At all times intense genetic efforts have been applied to comprehend development. On that 
account it is surprising that a relatively large class of regulatory genes has surfaced only 
recently: The first mircoRNA gene and its developmental role was described more than ten 
years ago but researchers are enlightening the broad and abundant presence of such genes 
only now. MicroRNAs are short RNA sequences that use antisense complementarity to 
repress expression of specific messenger RNAs. Studies of functional roles have shown that 
miRNAs are involved in complex genetic pathways regulating, among others, neuronal 
differentiation, stem cell division, cancer, embryogenesis and hematopoiesis. Recent reports 
indicate that this is likely to be only the tip of an iceberg with plenty of regulating 
possibilities. MiRNAs might thus be previously underestimated key participants in the field of 
gene expression [Pasquinelli et al., 2005].  If we could fully understand their biogenesis and 
function in vivo, we would possibly be able to predict a many more target genes and to 
annotate them and furthermore knock down unwanted, maybe pathological, ones through 
introduction of artificial miRNA genes. The maturation of these smallRNAs, however, 
appears to be of high complexity since a large number of proteins are involved and, dependent 
on the organism, diverse procedures seem to apply. Ever so much bioinformatical research 
has been done developing different approaches to reconstruct the miRNA pathway, and was 
partially successful already. Some programs were published to predict possible miRNA 
precursors from whole genomes, and there exist algorithms which match the mature miRNA 
with its corresponding target gene. Unfortunately, little is known about the step in between, 
the processing of precursors to mature and functional active miRNA, so there are only few 
approaches to close this prediction gap. For this reason, the question is: Is it possible to 
reliably predict mature miRNAs from their precursors? Within the context of my bachelor 
thesis I have followed this question with different general ideas and developed a tool which 
deploys them. 
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2 Spreading silence - Biological background of 
smallRNA mediated silencing  

 
Small RNAs are a family of regulatory RNA fragments which are mainly located in the 
intronic regions of an organism’s genome. These non-coding RNAs originate from double-
stranded(ds)RNA through a stepwise maturation process, and commonly they reach a length 
of 19 to 28 nucleotides in their functional stage. In this final mode, small RNAs are able to 
influence gene expression on a post-transcriptional level. Target genes are silenced via 
specific base pairing with the complementary small regulatory RNA. This mechanism had 
already been recognized in some eukaryotes about several years ago:  In 1998 the first 
observation of RNA-mediated gene silencing was made in Caenorhabditis elegans, where 
dsRNA leads to the degradation of mRNA - it was called RNA interference (RNAi) but at this 
time the new phenomena was not associated with small RNA fragments [Fire et al., 1998]. 
Further research showed that similar regulation procedures not only occur in all kinds of 
metazoa, but also in plants, where it is termed ‘co-suppression’ or ‘post-transcriptional gene 
silencing’ (PTGS), and in funghi (‘quelling’) [Kim, 2005a and references therein].  However, 
RNAi is still a common synonym for gene silencing mediated by small RNAs in general, but 
in fact it refers to the actual cleavage of a mRNA target gene. The emerging biotechnology, 
which is based on an efficient gene knock-down using small RNA molecules, is also called 
RNA interference. This is going to be one of the leading technologies in detecting gene 
functions and developing genetic therapies. 
In the following Section I will review the standard of knowledge around small RNAs, their 
classification, biogenesis and function.    
 

2.1 Introduction to smallRNAs – A classification 
 
Small RNAs in their final shape and function are sometimes indistinguishable; therefore they 
are classified by their origin. Basically, RNA can descend either from endogenous transcripts 
or exogenous sources of RNA, like retro-viruses for instance. 
DsRNA transcripts give rise to endogenous small RNAs through a stepwise processing by 
endonuclease-III-type enzymes.  These RNAs can be split up into two major groups: 
microRNA (miRNA) and short-interfering RNA (siRNA).   
 MiRNAs and siRNAs are often very close in function and biochemical structure but 
they do arise from different kinds of precursor states. While miRNA precursors fold back on 
themselves to form a hairpin-like structure, siRNAs derive from a perfect long double-
stranded RNA duplex. Usually only one miRNA is generated from pre-miRNA but several or 
many siRNAs are generated from long dsRNA. Interestingly, the first miRNA, named lin-4, 
was already discovered in 1993 [Lee et al., 1993]. During mutation experiments with 
C.elegans, Lee et al. observed an oppositional progression of development. While mutating 
lin-14 lead to a premature transition into next larval stage, a lin-4 mutation caused a rerun of 
the current stage. As a conclusion they assumed lin-4 to have some regulatory influence on 
lin-14. Similar observations have been made with let-7 miRNA and its target lin-41.  At first 
place, this did not seem very interesting to the research community but since with the 
discovery of RNAi, thousands of miRNAs have been found in nematodes, vertebrates, plants 
and even viruses [Kim, 2005a and references therein]. A useful database where all known and 
experimentally evaluated miRNAs and precursors are stored is the miRNABase 
(http://www.sanger.ac.uk/Software/Rfam/mirna/) [Griffiths-Jones, 2004], additionally the 
rfam database [Ambros V. et al. 2003] classifies miRNAs into families of homologous 
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function. Endogenous siRNAs have been identified since 2001 in T.brucei, S.pombe, 
C.elegans, D.melanogaster, and A.thaliana [Kim, 2005a and references therein]. Among 
siRNAs there are three different subclasses to be distinguished: repeat-associated RNAs 
(rasiRNAs), endogenous trans-acting siRNAs (tasiRNAs) and small scan RNAs.  
SiRNAs can be looked up in the smallRNA database 
[http://web.mit.edu/mmcmanus/www/siRNADB.html]  
Furthermore, there exist two more kinds of small endogenous RNA classes, which are not as 
well examined to classify them: tiny non-coding RNA (tncRNA) and small modulatory RNA 
(smRNA). Neither their biogenesis nor their action mechanism has become clear up to now. 
On the contrary, there are exogenous dsRNAs that are also able to induce expression of small 
RNAs. The naturally occurring ones include virus-induced siRNAs.  
     
Class Subclass mature 

length   
Biogenesis Mechanism 

microRNA 
(miRNA) 

N.A. 19-24 nt 2-step processing of hairpin precursors 
by RNase-III-type enzymes 

translational 
repression, 
mRNA cleavage 

trans-acting 
siRNA 

21-22 nt cleavage of long endogenous dsRNA 
by Dicer 

mRNA cleavage 

repeat-associated 
siRNA (rasiRNA 

24-26 nt 
(plants) 
24-27 nt 
(animals) 

cleavage of long dsRNAs derived from 
repetitive sequences or transposons by 
Dicer 

modificaton of 
histone and/or DNA 

Short 
interfering 
RNA 
(siRNA) 

Small scan RNA 
(scnRNA) 

~28 nt cleavage of long endogenous dsRNA 
by Dicer 

Histone methylation 
leading to DNA 
elimination 

Table 1: Classification of small RNAs 

2.2 SmallRNA mediated silencing mechanisms 
 
Known so far, smallRNAs guide at least 4 distinct modes of gene silencing mechanisms: (a) 
endonucleolytic cleavage, (b) translational repression, (c) transcriptional repression and (d) 
DNA elimination through histone modification. The latter two are mediated by rasiRNAs and 
scanRNAs: rasiRNAs recruit DNA-cytosine methyltransferase and histone modifying 
enzymes. Together they form the RNA-induced-initiation-of-transcriptional-silencing-
complex, or RITS, which methylates the DNA, leading to silencing at transcriptional levels 
(transcriptional gene silencing, TGS). ScanRNAs, however, induce histone methylation that 
leads to complete elimination of DNA. 
If the small RNA molecules interact with mRNA on a post-transcriptional level, it depends on 
the sequence complementarity between the regulating and the regulated RNA which kind of 
gene silencing follows. If the complementarity is nearly perfect, which is usually the case in 
plants, mRNA cleavage is induced between the 10th and 11th nucleotide measured from the 5’ 
end of the smallRNA. While cleaved mRNA is degraded afterwards by cellular nucleases, the 
miRNA remains intact and can guide the recognition and cleavage of additional transcripts. 
Cleavage reactions are mostly guided by siRNAs, which bind to an effector complex termed 
RISC (RNA induced silencing complex). However, there are also examples where miRNA 
initiates RNAi. Actually, miRNAs are usually involved in translational repression, which 
occurs upon a lower sequence complementarity between the interacting molecules. Therefore, 
they are integrated into a different effector complex: the microribonucleinprotein, or miRNP. 
The miRNPs might repress translation at a step after translational initiation, in a manner that 
does not observably change the density of ribosomes on the transcript due to just slowing or 
stalling them. An alternative possibility is that translation continues at the same rate but is 
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non-productive because the newly synthesized polypeptide is degraded immediately. In both 
cases, mRNA levels are not affected, indicating that silencing occurs around translation.  
An almost perfect base pairing to the target mRNA is verified at position 2-7 of the 
smallRNA, which seems to be important for target recognition.  An important enzyme which 
helps forming all effector complexes is Argonaute, a large protein containing 2 domains: PAZ 
and PIWI.  Whereas the PAZ domain, located at the center of Argonaute, interacts with the 3’ 
overhang of the dsRNA, the PIWI domain on the c-terminus shows homology to RNase H 
and is thus considered to cleave the target mRNA. Additional proteins involved in silencing 
are less conserved between organisms, there are some dsRBDs in Drosophila, which appear 
to be involved in strand selection and RISC assembly or as co-factors to the preprocessing 
protein Drosha. Putative RNA helicases also function in the assembly of effector complexes 
and RNA-dependent RNA polymerases (RdRPs) join the smallRNA together with its target.          
 

2.3 Focus on miRNAs - Biogenesis and function in animals and 
plants 

 
A miRNA is defined as a single stranded RNA fragment of an average length of 21-22 nt, 
originating from endogenous hairpin-like transcripts that are processed to their final form by 
RNase-III-type enzymes.  
MiRNA is the most investigated smallRNA species, at the moment the  miRNAregistry 
[Ambros et al., 2003; Griffiths-Jones et al., 2004] contains 2909 entries, which means 
precursors and their appendant miRNAs. 31 Organisms are listed, in addition to the leadoff 
animals C.elegans and D.melanogaster and their related species vertebrates, especially 
mammalia have recently been added to the database. The higher the evolutionary level of 
development of an organism the more intron is contained in the pre-mRNA, suggesting that 
mammals show the greatest variety of regulatory smallRNAs. [Mattick JS., 2004] 
Furthermore, the miRNABase stores miRNAs of 7 different plants (most investigated are 
A.thaliana and O.sativa), and even virus miRNAs have been released [summary of release 7.0 
of the miRNABase: http://microrna.sanger.ac.uk/sequences/help/summary.shtml].  
 

2.3.1 MicroRNA biogenesis in animals and plants 
 
The biogeneses of miRNA in animals and plants appear to be rather different, although both 
include homologues of the RNase-III-type enzyme Dicer. Like other RNA polymerase II 
transcripts, miRNA genes are capped, spliced and polyadenylated. They appear in a long 
primary transcript which contains the predicted miRNA precursor as part of an RNA hairpin 
structure. This early stage of miRNA is called the pri-miRNA [Zeng et al., 2002].  
In animal cells, the pri-miRNA is excised by the nuclear RNase-III-type enzyme Drosha [Lee 
et al., 2005].  Drosha forms a large complex, known as the microprocessor complex, together 
with its essential cofactor Pasha, which is known to contain 2 dsRNA-binding domains [Denli 
et al. 2004]. Full particulars are not explored about recognition and cleavage of Drosha, but it 
has been observed to be selective for hairpins bearing a large (>10 nt) terminal loop located 
on a stem with partially imperfect complementarity. From the stem-loop junction, it cleaves 
approximately two helical turns (~22 nt) into the stem releasing a ~70 nt long hairpin 
precursor.  Variations in the stem structure, such as bulges, and sequence around this region 
contribute to the fine-tuning of the actual cleavage site. Drosha has emerged as a key 
determinant of which part of the pri-miRNA will become the mature miRNA, because by 
clipping the primary transcript it generates one end of the final miRNA. The resulting pre-
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miRNA is exported into the cytoplasm by a nuclear export factor, called Exportin-5, which 
also functions as a quality control for hairpin precursors. The second step of processing occurs 
in the cytoplasm where Dicer trims the hairpin to a ~22 nt long RNA duplex [Lee et al., 
2002]. It recognizes the characteristic 3’ 2 nt overhang generated by Drosha cleavage and 
simply cuts off the loop, leaving an additional 3’ overhang on the other side. Due to the 
immediately following steps, the released duplex is very short-living in vivo.  
Homologues of Drosha were not found outside the animal kingdom, suggesting that the 
described processing does not apply for plant cells. Maturation of miRNA in plants has been 
primarily examined in A.thaliana, which shows 4 Dicer-like enzymes (DCL1-DCL4). DCL1 
provides the Drosha functionality, executing the first cleavage step to yield the miRNA 
precursor. Experiments have shown that levels in miRNA expression are only reduced in 
DCL1 mutants, which indicates that this homologue of Dicer is the key protein in plant 
miRNA biogenesis. Therefore, the second cut is assumed to be also mediated by DCL1. In 
contrast to animal cells, this takes still place in the nucleus followed by an additional 
methylation step, which requires another protein, termed HEN1. Short RNA, present in the 
nucleus, may be accidentally utilized as primer leading to amplification of unwanted genes. 
Methylation of the last nucleotide of the miRNA prevents this by protecting the plant miRNA 
from polymerases adding additional nucleotides to the 3’ end. The final duplex is then 
exported into the cytoplasm by HASTY, the plant orthologue of Exportin-5 [Chen, 2005]. 
Following cleavage and nucleocytoplasmic export, the miRNA pathway of animals and plants 
appears to be biochemically indistinguishable. One strand of the miRNA:miRNA* duplex is 
incorporated into RISC or a similar effector complex while the other one is degraded. 
Thermodynamic differences in the base-pairing stabilities of the 5’ ends determine which 
strand is selected. Essentially this means the strand with the weaker hydrogen bonding is used 
in silencing [Tomari et al., 2004]. However, this selection step is not sufficiently enlighted yet 
and awaits further investigation.  
     

2.3.2 MicroRNA function in animals and plants 
 
Plant and animal miRNAs are quite different regarding their complementarity to the mRNA 
target. While miRNAs in animals usually mediate translational repression due to an imperfect 
base pairing, plant miRNAs show a high complementarity and therefore initiate target 
cleavage.  
The most interesting question to arise from the discovery of hundreds of different miRNAs is, 
what are all these smallRNAs doing? For lin-4, let-7 and several other miRNAs their function 
and regulated targets were discovered based on in vivo experimentation even before their 
status as non-coding RNA genes. However, computational approaches have been developed 
to find the target genes of the miRNAs (see Section 3 for details). Due to the near-perfect 
complementarity of the miRNA this was especially successful in plants. The majority of 
miRNAs here have a remarkable addiction for targeting transcription gene factor families, 
particularly those involved in developmental patterning or cell differentiation, by mediating 
the degradation of key regulatory gene transcripts in specific daughter cell lineages [Review 
Bartel DP., 2004 and references therein]. For example, during differentiation, certain genes 
specifying a less differentiated state might need to be turned off. This can be achieved by 
repressing transcription or, to more quickly stop expression of such a gene, the differentiating 
cell can deploy a miRNA that cleaves that mRNA. This may explain why plant miRNAs are 
enriched in plant organs because most cells of plant organs are typically differentiated.  
As in plants, the predicted targets in animals are significantly high in genes with known or 
suspected roles in transcriptional regulation, suggesting that the described model could also be 
operating in animal tissues. A popular example is lin-4 and let-7, the first miRNAs discovered 
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in C.elegans which act as posttranscriptional repressors of their target genes involved in 
regulating developmental timing. Nonetheless, this enrichment for transcriptional regulators is 
much smaller in mammals, and functions of target genes represent a surprisingly broad 
diversity. Mir-181 in mammals, for instance, is involved in the control of hematopoiesis. 
Recent researches show the regulatory relevance of miRNAs in stem cell division, cancer and 
other human diseases [Ambros, 2004]. 
Like in the latter example, one single target can cooperatively be controlled by several 
different miRNAs and, the other way round, a single miRNA species may target different 
mRNAs. 
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3 Understanding complexity - Bioinformatical 
approaches 

 
Computational and system biologists will have to deal with the prospect that a substantial 
fraction of all animal mRNAs could have their precise level of expression defined by miRNA 
regulation. To the extend, that the miRNAs direct translational repression rather than mRNA 
cleavage, this regulation will be invisible to one of the most powerful tools of biologists, 
microarray analysis of mRNA levels. In this field, bioinformatics is becoming downright 
essential.  In this Section I will present bioinformatical approaches developed over the last 
years, which are deployed to reconstruct the miRNA pathway. 

3.1 Three steps to reconstruct the miRNA pathway 
 
In order to fully understand the miRNA pathway, we have to consider three main steps: First, 
on the basis of a genomic sequence, miRNA precursor sequences, which are generated from 
the primary transcript in vivo, can be predicted from secondary structure characteristics. 
Second, we have to find out the rules defining the following cleavage steps mediated by 
cellular RNases to yield potential mature miRNAs. Third, with these sequences it will be 
necessary to find the genomic targets regulated by miRNA mediated silencing mechanisms. If 
we were able to reconstruct all these three steps completely, it would offer the possibility to 
find out all about the amount of miRNAs and assign functions to each of them if the targeting 
gene is annotated. Conversely, it might open a new way for gene annotation by associating the 
repressing function of known miRNA with a new, yet un-annotated gene or gene cluster.    
       

3.2 Precursor Prediction 
 
The first step in reproducing the miRNA biogenesis is the prediction of possible precursors in 
an organism’s genome. There are several algorithms and a series of programs developed to 
answer the question of how many miRNA genes are encoded in animals and plants (Table 2). 
Through simple sequence homology search using BLASTN, homologues or orthologues of 
miRNAs, isolated by cloning, have been identified [Pasquinelli et al., 2000].  
The most noticeable property of pre-miRNA is its secondary structure: a hairpin, defined as a 
single stranded RNA folding back on itself.  Alternatively to homology search, one can 
therefore use RNA folding algorithms such as Mfold [Zuker, 2003], RNAfold [Vienna RNA 
package, Schuster et al., 1994] or RNALfold [Hofacker et al., 2004] to predict hairpin-like 
structures. The idea behind this is to minimize the energy of the given RNA sequence as it is 
thought that the one with the lowest free energy is the most stable one. For example the 
MiRseeker procedure examines the folding of RNA sequences conserved between two 
D.melanogaster species using Mfold [Lai et al., 2003]. This algorithm uses predictions of 
stem-loop structure formation as key criteria. It also takes into account the nucleotide 
divergence of miRNA candidates, as the authors detected less selective pressure in the loop 
sequence of orthologous precursors. MiRscan is another computational approach that has 
been applied to the genomes of C.elegans and humans [Lim et al., 2003]. It is similar to 
MiRseeker, but uses RNAfold as secondary structure prediction method. Recently, a 
particular phylogenetic approach has been published by Berezikov et al. [2005], which has 
been used to identify novel human miRNA precursors. This one, in contrast to former 
algorithms, is based on the noticeable conservation of precursor sequences and secondary 
structures among species. 
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Program URL Species References 
MiRseeker D.me Lai et al., 2003 
MiRscan 

http://genes.mit.edu/mirscan 
C.el/H.sa Lim et al., 2003 

Phylogenetic 
shadowing 

- H.sa Berezikov et al.,  
2005 

Table 2: miRNA precursor prediction programs 

 
 

3.3 Target Prediction 
 
The major challenge in determining miRNA functions is to identify their regulatory targets. It 
is much easier to find them in plants due to a high complementarity of the miRNA/mRNA 
duplex. In a systematic search for the targets of 13 Arabidopsis miRNA families in 2002, for 
instance, 49 unique targets were found simply by looking for transcripts with near-perfect 
complementarity to the miRNA [Matthew, Rhoades et al. 2002].  Confidence in many of these 
predictions was backed by the observation that the complementarity is conserved among 
flowering plants, and the majority of the 49 targets has since been confirmed experimentally.  
Hundreds of animal miRNAs have also been identified, but only a few of their targets are 
known. Prediction of mRNA/miRNA duplexes is especially challenging in animals, since the 
interaction, in contrast to plant cells, usually occurs via incomplete base pairing. The rules 
that govern such interactions are incompletely defined, but as mentioned before, the near-
perfect complementarity at the 5’ end of the leading miRNA is observed throughout the 
animal kingdom and therefore holds as a proper starting point for computational approaches.  
Especially residues 2-8 of invertebrate miRNAs pair perfectly to 3’ UTR of the targeting 
mRNA and are perfectly conserved in othologous transcripts of other metazoan species.  A 
contiguous helix of at least 7 basepairs is nearly always seen in this region. Based on this 
characteristic trait, a number of algorithms has been developed to predict animal miRNA 
targets. The method of Stark et al. for the prediction of Drosophila target genes provides a list 
of candidate targets which has to be combined with additional biological criteria, including 
functional relationships shared among them [see Review Lewis et al. 2003 and Refs therein] 
This is not an accurate solution in cases where predicted targets do not show clear functional 
relatedness. Subsequent approaches additionally used RNA folding algorithms (Mfold [Zuker 
et al. 2003], RNAfold [Hofacker et al. 2003]) to estimate free energy to each miRNA/target 
site interaction to make sure the predicted duplex has a relatively high thermodynamic 
stability. Furthermore, programs like ‘TargetScan’ [Lewis et al. 2003] and ‘findMiRNA’ 
[Sundaresan et al. 2005] in addition require candidates to have multiple binding sites in the 
target 3’ UTR and evolutionary conservation of the target between species. ‘RNAhybrid’, a 
target prediction tool developed at Bielefeld University [Rehmsmeier et al. 2004], includes 
also miRNA specific extreme value distribution parameters. Most experimentally detected 
targets have been confirmed with these approaches and many new ones have been predicted 
in Drosophila and mammals.   However, this step, authentic prediction of miRNA targets, 
appears to be a difficult mission in the future, particularly in animals. 
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Program URL Species References 
TargetScan/ 
TargetScanS 

http://genes.mit.edu/targetscan Vertebrates Lewis et al., 2003 
Pfeffer et al., 2004 

miRanda http://www.microrna.org D.me/H.sa Kiriakidou et al., 2004 
miRNA-target 
prediction 

http://www.russel.embl.de/miRNAs D.me Stark et al., 2003 
John et al.,2004 

RNAhybrid http://bibiserv.techfak.uni-
bielefeld.de

D.me Rehmsmeier et al., 2004 

Table 3: miRNA target prediction programs 

 

3.4 The missing link: Prediction of mature miRNA  
 

The chain of reconstructing the miRNA pathway is still incomplete since target prediction 
needs a mature miRNA to find regulated transcripts and precursor prediction only provides a 
~70 nt long immature pre-miRNA. To link these two procedures, a method to predict ~22 nt 
mature miRNA from its precursor should be developed. Surprisingly, less efforts have been 
undertaken to close this intermediate step, maybe because this certainly is a serious enterprise. 
No program executing this step was published as of April 2005, at the time of beginning my 
Bachelor Thesis, so I started to develop different ideas to overcome this challenge.    
For the sake of completeness I want to mention that another computational approach dealing 
with the same problem (immediately following a precursor prediction), especially in animals, 
was published in June by Wang et al. [2005].  The authors developed an algorithm, called 
miRAlign, to find new miRNAs using both sequence information and structural 
characteristics of already known miRNAs.  Given a ~70 nt candidate precursor sequence, 
miRAlign scores this possible precursor and predicts its mature form in 5 steps: (1) Secondary 
structure of both strands of the candidate precursor stem are predicted by RNAfold, all 
sequences with a MFE< -20 kcal/mol are aligned in a pairwise fashion to all known ~22 nt 
miRNAs in their training set by CLUSTALW. Only those pairs exceeding a defined minimum 
threshold are kept for further analysis. For each of those potential homolog pairs, the ~22 nt 
subsequence on the candidate that aligns to the known miRNA is regarded as the potential 
mature miRNA. The last predefinition is remarkable because it implies that the position of the 
mature miRNA in the comparing precursor from the training set has to be already defined. (3)  
The position of the mature miRNA on the candidate precursor is than predicted by 
considering 3 conditions: (a) the ~22 nt potential miRNA should not locate on the terminal 
loop of the hairpin, (b) it should locate on the same stem side of the hairpin as its known 
homologues and should (c) not differ too much in position relative to them. The resulting 
position difference between known and candidate mature miRNA is than calculated, all 
candidates with a difference lower than a defined cut-offs are selected for the next step: (4) 
RNA secondary structure alignment. RNAforester is deployed to calculate a normalized 
similarity score, which ranges from 0 to 100 after normalization by the self-alignment score of 
the known precursor. (5) Finally, a total similarity score is assigned to the candidate sequence 
as the maximum of the similarity scores of all homologues to the candidate precursor. The 
higher this total score the more likely is the authenticity of the candidate. While the original 
intention of this algorithm is the precursor prediction, it includes approaches of mature 
miRNA prediction as well. However, this algorithm supposes the knowledge of the position 
of mature miRNA in the related precursors. This can not be assumed for all newly predicted 
precursors. We will have a closer look on possibly better solutions while trying to develop an 
approach that deals with the prediction of mature miRNA from given precursors exclusively.   

http://genes.mit.edu/targetscan
http://www.russel.embl.de/miRNAs
http://bibiserv.techfak.uni-bielefeld.de/
http://bibiserv.techfak.uni-bielefeld.de/


 13

4 Trying to bridge the gap – ‘In-Silico-Dicer’ 
 

4.1 The Concept: Two general approaches 
 
The central question of this work is: Can we predict the mature miRNA from a known 
precursor? I suggested ‘Yes, we can’, thus, the main challenge is to develop reasonable 
algorithms to prove this thesis. More formal, I define the task as follows: Given a validated 
miRNA precursor sequence pcS: Where is the relative position of the mature miRNA, mmP, 
relative to pcS?    

Imprinciple, I took two main ideas into consideration: Intrinsic and Extrinsic prediction 
of mature miRNA. Extrinsic prediction seizes a method, intentionally published to predict 
miRNA precursor sequences on the basis of their conservation between species [Berezikov, 
2005]. For this approach I needed to obtain external information, more precisely related 
miRNAs, to compare to. Therefore, this approach is termed ‘Extrinsic’. Intrinsic uses only 
internal information the given precursor sequence provides. The idea was to simulate the 
cleavage steps mediated by the RNase-III-type enzymes Drosha and Dicer, as mentioned in 
Section 2. Due to the fact that these enzymes have nothing else than the precursor’s sequence 
and secondary structure to cut properly, I suggested that prediction might be possible with this 
information only. I liked the vision to reconstruct the processing enzymes recognition and 
cleavage and therefore named the tool to develop ‘In-Silico-Dicer’.  
 

4.1.1 The intrinsic approach and its extension 
 
The intrinsic approach to predict mature miRNA from its precursor does not require external 
information. As input it uses only the nucleotide sequence of the precursor. Based on this 
sequence, a secondary structure prediction method, e.g. RNAfold [Hofacker et al, 2004] or 
Mfold [Zuker et al., 2003], is executed to yield the folded miRNA precursor, which should 
form a hairpin structure. Now we assume every substring of the precursor to be a mature 
miRNA candidate, the length of the subsequence should therefore range between 19-24 nt (for 
predicting animal miRNAs a length of ~21 nt is suggested). Several characteristics are known 
about mature miRNAs:  
 

(1) they do not locate on the terminal loop, but at one arm of the hairpin stem,  
(2) mostly, they do not locate in a region with too many bulges or internal loops and  
(3) they are often observed to start with the nucleotide ‘U’.  
 

Although, these conditions are not very precise, it might be possible to define a formula that, 
on the basis of sequence and secondary structure of every candidate, can be applied to assign 
each window of the specified length a probability score to be a mature miRNA. The candidate 
with the highest probability is proposed as mature miRNA.  
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Precursor Sequence 
>cel-mir-84 
GUGGCAUCUGAGGUAGUAUGUAAUAUUGUAGAC
UGUCUAUAAUGUCCACAAUGUUUCAACUAACUC
GGCUGUUCU 

Scoring 
 

Of each candidate 
mature miRNA 

~21 nt 
 

Predict Secondary Structure 
 
gu    u     G    A  U        A   uguc 
  ggca cUGAG UAGU UG AAUAUUGU gac    u
  |||| ||||| |||| || |||||||| |||     
  uugu ggcuc auca ac uuguaaca cug    a
uc    c     a    -  u        c   uaau 

 
 

Figure 1: Procedure of the Intrinsic mature miRNA prediction method. The input precursor sequence 
(blue) is processed in 2 action steps (orange)  

 
 
 
 
 
The intrinsic prediction works also for several precursors at the same time.  When applying 
this method to some closely related precursors I observed a quite similar position of predicted 
mature miRNA (data not shown). Due to this observation I thought of a possible improvement 
of the algorithm that may fine-tune the prediction by aligning the input precursor to closely 
related miRNA precursors (e.g. from the same miRNA family). This set of closely related 
comparison precursors can be derived from a database of miRNA precursors, e.g. the 
miRNABase, by searching similar precursors by sequence. For this task, the Smith-Waterman 
Algorithm [Smith and Waterman, 1981] for pairwise local alignment is deployed. The 
algorithm generates a similarity matrix and returns – in this application – the highest value 
from this matrix, which represents the similarity score. All precursors which, aligned to the 
input precursor, return a similarity score higher than a user-defined cut-off are considered to 
be related precursors to the given input sequence (see ‘Implementation’ for details). 
Thereafter, a multiple alignment is performed on the set of related precursor sequences and 
than matched together with the scores calculated for each of the precursor sequences (see 
‘Implementation’ for details on this matching step). As a result, we have a multiple alignment 
with a score assigned to each single character, which represents the possible mature miRNA 
sequence surrounding this nucleotide. In the final step, a column-wise average score is 
calculated and, as in the simple intrinsic approach, the position identified by the highest score 
is considered as position for the mature miRNA. One has to pay attention to the fact that this 
predicted position is relative to the alignment, not to the precursor sequences itself. As a 
consequence all gaps of the analyzed precursor have to be removed to yield the absolute 
miRNA position.    
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 Aligned 
Scores  
of all 

precursors

 
 

Scoring 
 

of each 
candidate 

mature 
miRNA 

 
 

Predict Secondary Structures 
 
gu    u     G    A  U        A   uguc  
  ggca cUGAG UAGU UG AAUAUUGU gac    u 
  |||| ||||| |||| || |||||||| |||      
  uugu ggcuc auca ac uuguaaca cug    a 
uc    c     a    -  u        c   uaau  

Precursor Sequences 
>cel-mir-84 
GUGGCAUCUGAGGUAGUAUG
UAAUAUUGUAGACUGUCUAU
AAUGUCCACAAUGUUUCAAC

Multiple Alignment 
of all Precursor Sequences 

UG-UAGG—AGUGAUUUUAUCCUGUGUAGAAGAUAA... 
UG-UGGAGCCCUGCGCUCUCUCUCUG----AGAUA... 
UGGUCGGGUUAU---AUUGCCCGCUGU-GGAGAUA...

 
miRNABase 

 

Figure 2: Extended Intrinsic Prediction of mature miRNA. Grey areas are similar to the simple
intrinsic prediction, except, that they are multiple executed. The input may be one or more precursor
sequences. (blue) With this input related precursor sequences are searched within a miRNA-DB (red).
The returned set of sequences is multiple aligned (orange) and thereafter matched together with the
scores of each precursor.   

4.1.2 Extrinsic Approach 
 
The general idea behind this approach is the assumption that miRNAs appear to have 
important, maybe even essential, regulatory roles throughout all explored organisms. 
Therefore, miRNA genes should be conserved among genomes, especially among closely 
related species. Berezikov et al. [2005] already applied this idea to the prediction of precursor 
sequences, many of which were confirmed experimentally later on.   Precursor sequences, 
however, may vary in their nucleotide sequence as long as they are able to form a stable 
hairpin secondary structure. In contrast, the sequences of the mature miRNA as the actual 
regulatory core sequences of the pre-miRNA must not differ too much in its primary sequence 
to ensure complementarity to the target gene. For this reason, one can assume a noticeably 
higher conservation of the mature sequence among species relatively to its known precursor. 
So, for this prediction approach, a set of related precursor sequences is unconditionally 
needed because all following actions are based on this set. It is searched within the 
miRNABase as described in Section 4.1.1. Just as well, a multiple alignment is created on the 
derived most similar sequences.  Now, based on this alignment, a conservation value is 
calculated column-wise (see ‘Implementation’ for details) and thereafter these conservation 
values are summed up for all subsequences of length 21 (nt). The higher the conservation 
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sum, the higher the probability for the mature miRNA to locate in this window. Again, this 
position has to be seen in relation to the alignment. 
 
 

Precursor Sequences 
>cel-mir-84 
GUGGCAUCUGAGGUAGUAUGUAAUAUU
GUAGACUGUCUAUAAUGUCCACAAUGU
UUCAACUAACUCGGCUGUUCU 

Multiple Alignment 
of all Precursor Sequences 

 
UG-UAGG—AGUGAUUUUAUCCUGUGUAGAAGAUAA... 
UG-UGGAGCCCUGCGCUCUCUCUCUG----AGAUA... 
UGGUCGGGUUAU---AUUGCCCGCUGU-GGAGAUA...

 
miRNABase 

 

Calculation of Conservation 
 

UG-UAGG—AGUGAUUUUAUCCUGUGUAGAAGAUAA...
UG-UGGAGCCCUGCGCUCUCUCUCUG----AGAUA...
UGGUCGGGUUAU---AUUGCCCGCUGU-GGAGAUA...
               

Figure 3: Extrinsic Prediction of
mature miRNA. The input may
be one or more precursor
sequences (blue). Related
sequences are searched within
the miRNABase (red). The
yielded set of precursors is
multiple aligned with the input
and in the basis of this
alignment the conservation is
computed. 

 

4.2 Design and Implementation 
 
The Tool ‘In-Silico-Dicer’ has been developed to predict mature miRNA from a given 
miRNA precursor. For every input pre-miRNA it makes a suggestion for the most probable 
position of the mature sequence within this precursor. Additionally, it provides the 
professional user with several graphical representations of the output, which may be helpful to 
evaluate the predicted position in a biological context.  
‘In-Silico-Dicer’ has been implemented in the JAVA programming language (JDK 1.5.0.), 
and consists of several packages containing too many classes to describe them all in detail. 
For this reason, I refrain from giving a complete UML description and will primarily describe 
the most important classes and interactions among them in the following Section.  
 

4.2.1 Overview 
 
A graphical overview of the structure and design of ‘In-Silico-Dicer’ is shown in Figure 4. 
The following description will refer to this illustration.  
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Extrinsic 
Profile 

Calc Conservation
Action 

Align Action 

Scoring Action 
Intrinsic  
Plot 

Intrinsic  
Profile 

Folding Action 

Operator 
Used Database 
Used Algorithms 
Used Parameters 
 

miRNABase 
 

2909 entries 

My base I

Input 
Precursor 
Seq 

 fasta 

- ID 
- Name 
- Sequence  
- Folding 
- Similarity 

Precursor 

pc pc

Precursor 
Container  

Precursor
Seqs 

multi fasta

My base II 
My base III 

GUI – Main Frame 

Figure 4: Overview over the program structure of ‘In-Silico-Dicer’. See Section 4.2. for details. 
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Input  
As the main goal is to predict the mature miRNA from its precursor, valid inputs to the 
program are a FASTA file (see Appendix) of the given precursor as well as multi-FASTA 
files to process more than one precursor. One can run predictions on every input precursor or 
just use the set for quick comparison with the focused precursor sequence. 
 

The Central Objects 
All classes which hold the main information, needed to process the input precursor, are 
collected in the Operating package (objects shaded in green).  First I will just concentrate on 
the Classes Precursor and PrecursorContainer. From the input precursor file a Precursor-
Object is created which holds the following properties:  
 

• Name - the whole description part of the FASTA file  
• ID - refers to the first part of this description which is an unique key defined in the 

miRNAregistry annotation system [Griffith-Jones, 2004]  
• Sequence – rest of the FASTA file 
• Folding - represents the secondary structure of the precursor, initially set to null, not 

assigned until the precursor traverses further processing    
• Similarity – refers to a pairwise alignment with another precursor, initially set to the 

maximum value (derived from score setting of the used alignment algorithm) because 
aligned to itself the precursor should have full similarity  

 
If the input consists of more than one precursor sequence, a collection of Precursor objects is 
created, the PrecursorContainer. The PrecursorContainer object is an extension of the Vector 
Class that holds only Precursor objects. This class implements some useful methods to search 
for a specific Precursor object by: 

• ID of the Precursor 
public Precursor  
getPrecursorByID(String theID); 

 
Fast search method due to the use of Hashtable. 
 

• Name of the Precursor 
public PrecursorContainer  
getPrecursorByName(String theName); 

 
If it is already known to which family the precursor belongs, it may be useful to 
search related family members by name  
 

• Sequence of the Precursor 
public PrecursorContainer 
getPrecursorBySequence(String theSequence); 

 
This search method is mainly used to find related Precursors by similar 
sequences. It implements the Smith-Waterman Algorithm [Smith and Waterman, 
1981] and returns all precursors with a similarity to the input higher than a 
defined cut-off value. The returned Precursors are subsequently sorted by 
similarity. 
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The miRNAregistry – the central database 
  
The miRNAregistry is actually a permanently stored object of the type PrecursorContainer. It 
has been initially created from the multi-FASTA file of all precursors listed in the 
miRNAregistry. From version 7.0 of the database, 2909 precursors were available [Griffith-
Jones, 2004]. Once read into a PrecursorContainer object, one can apply the search methods 
mentioned before to yield comparable precursor sequences from the miRNAregistry. 
Additionally, the program offers the possibility to create own databases from multi-Fasta files 
similar to the ‘hairpin.fa’ from the miRNAregistry, e.g. one might create a database which 
contains only plant precursors because comparisons between plant and animal precursors are 
not reasonable to predict new mature miRNA due to the fact that maturation differs between 
the kingdoms. During the use of the application, the user can switch between databases. These 
self-defined databases persist, so they can be used during another program run again.     
 
 

The Action Steps 
 
The core of the program to predict the mature miRNA position is realized by a chain of 
actions (actions shaded in orange) on the Precursor or the PrecursorContainer-Object. The 
Action-Chains of the general prediction approaches, explained in Section 4.1., overlap at 
some point, so there is no need to implement a similar step twice. This concept makes the 
program more flexible, if one develops another general approach, the order might be simply 
rearranged or an action can be added to the chain. Action-Chains for the proposed approaches 
are as follows: 
 

• Intrinsic Prediction (simple) 
[ Folding ]  [ Scoring ] 

• Intrinsic Prediction (extended) 
[ Folding ]  [ Scoring ]  [ Multiple Alignment ] 

• Extrinsic Prediction 
[ Multiple Alignment ]  [ Calculation of Conservation ] 

 
 
In the end of each action chain for every Precursor/PrecursorContainer several 
score/conservation values are returned. These can be output to the user as raw data or in the 
form of a plot (see ‘Graphical User Interface’). 
To achieve a maximum of flexibility of the program, the algorithms, which are applied in 
each action step, should be changeable. While there are already several existing standard 
algorithms for secondary structure prediction (Folding) and multiple alignment of sequences, 
there are rules neither for calculating the conservation between sequences nor for scoring  
precursor sub-sequences regarding their probability to be the mature miRNA. For this reason, 
all action steps in the action package have been implemented through an interface which 
defines parameters and returns values for each of the actions. For every action step interface, I 
have implemented exactly one concrete class (see ‘Used Algorithms’ for details). This 
concept makes it easy for future developers. They only have to include alternative algorithms 
in order to improve the mature miRNA prediction; they only have to develop a class which 
implements the respective Interface. All available algorithms choices are displayed 
automatically and the user may choose which one to apply for his purpose.         
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The Operator Concept 
In order to maintain the control over all this flexibility, a central object that holds all settings 
is necessary. The application therefore deploys the Operator, which is also part of the 
Operating package (shaded in green). The Operator holds all variables and provides Getter 
and Setter Methods to change and retrieve them from other classes.  Most important variables 
and initial values are listed in Table 4. 
 
Variable Description Initial Value 
Precursor Database current precursor DB to search in for 

comparable precursors 
miRNAregistry 

FoldingAction the current algorithm to predict secondary 
structure 

RNAstructure 

ScoreAction the current algorithm set to score the 
precursor 

Score_ 
Gaasterland 

MultipleAlignAction the current multiple alignment method 
 

ClustalW 

CalcConservationAction the current algorithm to calculate the 
conservation between several precursors 

CalcCons_ 
Entropy 

mmRNA length length of the mature miRNA to predict 21 
MATCHscore, 
INDELscore,  
MISMATCHscore 

score settings for the Smith-Waterman 
algorithm to search for similar precursors 
by sequence 

2 
-1 
-2 

Table 4: Some Variables and its initial values holded by the Operator 

  
Additionally, the Operator provides the methods to actually predict the position of mature 
miRNA within its given precursor. These methods need the scores derived from the action 
steps as parameters: 

public int predictMatureMiRNAin(Vector dataVec); 
public int predictMatureMiRNAex(Vector dataVec); 

These methods however, return the position of the mature miRNA relative to alignment. To 
get the absolute position of the mature miRNA, one further step is required: 

public int[] findStartInSinglePC 
                             (int startINalign, Vector align); 
The Operator is also in charge of creating new databases from FASTA files and reading the 
selected ones to provide their content to classes working on the current database. In this 
application, only one project, which means one miRNA prediction, at a time is possible.  To 
ensure that there is always only one definite value selected for every setting, the Operator is 
implemented as a Singleton. 
 

4.2.2 Used Action Algorithms  
 
All Actions in the Action Package operating on a Precursor or PrecursorContainer are defined 
through interfaces which await concrete implementation. I implemented one single class for 
every interface, which at the moment leaves no choice of algorithms to the user. It will be 
challenging to develop alternative classes and methods for every each interface within a 
biological context to improve the prediction of mature miRNA. 
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IFolding Action 
For secondary structure prediction of a sequence, I deployed RNAstructure, which is a 
Windows implementation of the Zuker Algorithm [Zuker et al., 2004] based on free energy 
minimization. ‘In-Silico-Dicer’ calls the program by creating a new process. 

Process p = Runtime.getRuntime().exec(RNAfold); 
 
This algorithm returns a String representing the secondary structure of the sequence. The 
String is given in ‘Vienna’ notation, where brackets represent paired nucleotides and dots 
represent unpaired ones e.g., 

Sequence: CUACUCUGUCAUGUAUAACUAAAUUUGAUUGACACUUCUGUGAGUA  
Folding:  .((((((((((..................))))).......)))))  

 

IScoring Action 
To score a precursor in the context of this application means to assign a score to every 
potential mature miRNA sequence within the precursor sequence which represents the 
probability of this sequence to be the mature miRNA. Basically, a potential mature sequence 
can be every valid subsequence of the precursor. It can be excluded that the miRNA locates 
on the stem-loop, but for the following algorithm all possibilities are considered. The 
IScoringAction Interface is designed to reproduce recognition and cleavage on the precursor 
mediated by RNase-III-type enzymes (see Section 2); therefore it is only provided with the 
same input as these enzymes are: (1) nucleotide sequence of the precursor and (2)its 
secondary structure. So, to yield a useful result, the Interface requires (a PrecursorContainer 
holding) Precursors with an assigned Folding property, derived through a previous run of 
IFoldingAction. So far, no validated reliable method to score precursors has been published 
perhaps due to insufficient biological knowledge about the complex processing of miRNA. 
However, for Arabidopsis thaliana, an algorithm to predict precursor miRNAs and their 
mature sequences at once has recently been developed by a New Yorker research group 
[Wang et al., 2004]. Their prediction covered 63% of known Arabidopsis miRNAs and 
identified 83 new ones, which have either been validated through northern blotting, massively 
parallel signature sequencing (MPSS) or microarray analysis. Additionally, for the recently 
predicted miRNAs, putative targets, which were functionally conserved between A.thaliana 
and O.sativa, have been identified. Because miRNA biogenesis is a stepwise process in 
Arabidopsis as well as in animals [Chen, 2005], the scoring method may be applicable also to 
animals. Wang et al. considered both sequence and secondary structure to develop a formula, 
which is applied to every potential mature sequence (figure 5). 
 
miRNAscore =  
  (number of mismatches)  
+ (2*number of nucleotides in terminal mismatches) 
+ (number of nucleotides in internal bulges/number of internal bulges) 
+ (1) if the miRNA sequence does not start with U 
 
One has to be attentive because in this formula the score is calculated using penalties for 
properties which are suggested not to apply to mature miRNA sequences.  
 
 
 
 
 

Figure 5: The Scoring formula 
is applied to every subsequence 
of the precursor 

           uuu       c    ucaa 
augacugauuuc   ugguguu agag    u
|||     a|||||||||   ||||||| ||||
uaUUGGCUAAAG   ACCACGA Ucuu    u
            UCU       -    uuaa 
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Above all, this Action step may be subject to further development because more details of 
how the processing enzymes recognize and cleave the miRNA precursor await closer 
investigation. In collaboration with biologists an optimal scoring, that nearly perfectly 
reconstructs the selection of mature miRNA sequences mediated by cleavage enzymes, might 
be found.   
 

IMultipleAlign Action 
For aligning multiple precursor sequences I used CLUSTALW [Chenna et al., 2003], a 
downloadable tool provided by the EBI (European Bioinformatics Institute).  Basically 
CLUSTALW follows these 3 main steps: 
1. Determine all pairwise alignments between sequences and the degree of similarity 

between them. 
1.1. Using the pairwise alignment, compute a distance between the sequences. Commonly 

this distance is calculated by looking at the non-gapped positions and counting the 
number of mismatches between the two sequences. Then divide this value by the 
number of non-gapped pairs. 

1.2. Transfer the distance values into a matrix representing all possible pairs of sequences. 
2. Construct a similarity tree based on the matrix from 1.2 and Neighbour-Joining. 
3. Combine the alignments from 1 in the order specified in 2 using the rule “once a gap 

always a gap”  
 
‘In-Silico-Dicer’ calls the program by creating a new process: 
Process p = Runtime.getRuntime().exec(clustalw  

     IOfiles/SimilarPrecursors.txt  
          /output=fasta 
          /outorder=input); 
 
As specified in the settings, clustalW takes a multi-FASTA file of the precursors to be aligned 
as input and outputs a multi-FASTA file of the alignment (See ‘Appendix’ for details on 
output format). To ensure correct processing of further Action Steps, the aligned precursors in 
the multi-FASTA file should be ordered the same way they are input. 

ICalcConservation Action 
For calculating the conservation between aligned precursor sequences I developed an 
algorithm using free entropy H defined by the following formula: 
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where Λ={A, C, G, U}, the Alphabet of nucleotides and c one character from this alphabet. 
This formula is applied to every column of the alignment obtaining a rate of ‘disarrangement’, 
which is indirectly proportional to the conservation.  The maximal ‘disarrangement’ is 
achieved when the number of nucleotides is uniformly distributed, e.g. when the alignment 
column consist of exactly one A, C, G and U each. Due to the known size of the alphabet, one 
can easily get the maximum value for the entropy of one column by applying 4 to the formula. 
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Consequently, the Conservation C of an alignment column is calculated by subtracting the 
entropy from the maximal entropy=  
 HHHC −=−= 0.2max 
 
Gaps do not contribute to a good conservation in a biological context. However, the given 
formula will return minimal entropy and a conservation of two given an alignment column 
consisting only of gaps but one single character. To overcome this problem a gap count is 
introduced. Besides the number of nucleotides per column, the gaps are counted and 
afterwards this value is divided by four and assigned to every each nucleotide count. So, in 
the case where the alignment column consists of hardly any nucleotide, every nucleotide 
count will be assigned ¼ of the total gap count which leads to a nearly uniform distribution, a 
high entropy and consequently a very low conservation.  
 
 

4.2.3 Graphical User Interface 
 
The Graphical User Interface of ‘In-Silico-Dicer’ has been designed to provide the user with 
full functionality and easy navigation through all settings, program steps and output. 
In Figure 6 an overview of the programs interface is shown. I will explain functions of all 
parts of the interface by an exemplary virtual run through the application. While working with 
‘In-Silico-Dicer’ the user might want to use different databases to work on: The repertoire of 
databases is displayed in a drop down menu located on the toolbar on top of the frame. The 
number of precursors stored in the current database is shown alongside this drop down menu 
so that the user can always estimate which data he is working on and how long a search for 
similar precursors within the database may take. It is possible to add new self-defined 
databases during the application run by reading in a multi-FASTA file. The user can retrieve 
this option over the menu item ‘File  create new database…’. The new database is 
automatically added to the drop down menu as the currently selected database. The input, 
which may be one or more precursors, is realized by an editable text area in the upper left of 
the frame. The user has two options to input his data: (1) pasting the precursor in FASTA 
format or (2) directly read in a FASTA/multi-FASTA file to be displayed in the input area. 
One can reprocess the input manually after loading a file. By clicking the ‘Adopt Input’-
Button, all precursors are adopted into the tree on the right side. In this transferring step, all 
input sequences are folded. By double clicking on a precursor in the tree, which is represented 
by its unique ID, all features of the precursor, Description, Sequence, Folding and Similarity, 
are displayed. As mentioned before, the similarity of the input precursor is initially set to the 
maximum because the precursor equals itself. Precursors that are similar in sequence and 
therefore are considered to be related to the input, can be found by browsing the selected 
database.  By means of a continuous cut-off value, the user is able to regulate the distance of 
relation and accordingly the number of precursors returned as similar precursors. These 
precursors are listed serially numbered in the lower left text area (which is non-editable), 
sorted by their similarity to the input. Also these search results can now be adopted into the 
tree, where they are displayed in a similarity order. With the tree the user keeps an overview 
over his data, he may look for details on specific precursors, add new ones and afterwards 
select only the favoured precursors to work with further on. By clicking ‘Action’, an 
additional panel is displayed which shows all plotting options. On this panel, the desired 
Action Classes which will be used for the prediction process may be selected through drop 
down menus. Below these selection boxes, one can find the actual action buttons. Each button 
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will call another prediction approach as described in Section 4.1. The particular action steps 
are executed on the tree-selected precursors only. The computed data is then graphically 
displayed to the user through plotting. Extrinsic and intrinsic prediction approaches provide 
diverse kinds of plots: While conservation (extrinsic) is illustrated by a bar plot, scores 
(intrinsic) are plotted in lines. Examples for intrinsic and extrinsic plotting are shown in 
Figures 6-8. The plots are arranged within the frame with the help of a tabbed pane. For every 
action executed on the selected data, a new tab is created in which the plot is displayed. 
Additionally, an info frame pops up, providing the professional user with the raw data of the 
plot.       
 
 
 
 
 

 

 

Figure 6: Overview of ‘In-Silico-Dicer’`s User Interface 
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Figure 7: Intrinsic Plot. The precursors are separately scored and plotted unaligned. On the x-axis the
precursor position can be read off, the score is mapped to the y-axis. Of the selected precursors from
the tree, the topmost (usually, the input precursor) is highlighted in red. Position of predicted mature
miRNA for the first selected precursor is displayed and shaded in salmon. The position can
additionally be read off from the values beneath the shaded area. In this plot, 2 local minima can be
observed. Due to the scoring method it holds: the lower the score, the higher the probability to be the
position of mature miRNA. These two minima coincide with the complementary stem sequences which
are paired. The area with relatively high scores between them refers to the stem loop which should
have a very low probability to hold the mature miRNA.  

 
 
 

Figure 8: Intrinsic Profile. The precursors are scored separately and thereafter aligned. Gaps have no
score, so they do not have a score data point. One can see in the plot where each precursor is gapped.
Again, the position of mature miRNA is calculated for the topmost, red, precursor. The salmon
shading shows the position within the plot, the values displayed beneath, specify the position relative to
the precursor. 

 

 

Figure 9: Extrinsic Profile. This plot displays the conservation profile of several precursors. Alignment
position is displayed on the x-axis, conservation on the y-axis. The higher the bars, the higher the
conservation at this position. The two ‘hills’ are the complementary stem regions, which are highly
conserved, whereas the terminal loop between them differs among precursors. The area shaded in
salmon is the most conserved one and represents the position where the mature miRNA is predicted.
The shaded bars are located at the position of mature miRNA relative to the alignment, while the
values displayed beneath specify the position relative to the considered precursor.  
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An additional plot feature of the application is the ‘smooth option’ which, however does not 
interfere with the prediction of mature miRNA. This feature has been implemented to display 
the plots in a user-friendly way. The grade of smoothing is selectable to the user by the 
following dialog accessible via ‘File settings…’ (Figure 10) 

    
Figure 10: Smooth option dialog. The user can select whether he 
wants the plot to be smoothed or not by checking the accordant 
box. Grade of selection is managed by changing the window size 
over a user-friendly spinner. The window size refers to the 
length of the subsequence for which an average value is 
calculated and plotted instead of the original data point. The 
higher the selected window size, the smoother the plot. Initially, 
the smooth window size is set to 21. However, the raw data 
which is used to predict the position of mature miRNA is not 
affected by changing this setting. It is only for display purpose.    

 
 
 

 
 

4.3 Evaluation of ‘In-Silico-Dicer’ 
 
In Sections 4.1 and 4.2 I gave an overview of ‘In-Silico-Dicer’, the program structure, the 
design and implementation details and concrete used algorithms. I showed that the application 
is highly flexible to developers who want to implement new classes to predict mature miRNA 
maybe with improved algorithms. ‘In-Silico-Dicer’ provides a scheme for the three 
approaches  presented in  Section   4.1, 

• Intrinsic approach  
• Intrinsic approach with alignment 
• Extrinsic approach. 

In this Section I want to assess whether these approaches produce reliable results. To examine 
this question, one has to apply validated miRNA precursors, where the position of mature 
miRNA is already known. After the program run, one can compare the predicted results with 
the genuine ones, which are experimentally verified.   

4.3.1 Test sets and comparison details 

The miRNA registry 
 
The miRNAregistry is the most relevant database containing miRNA precursors from about 
35 different organisms including plants, animals and viruses. The precursors are stored 
together with their corresponding authors, source organism, information on genome location,  
folding and the position of mature miRNA. Most of these positions have been discovered 
experimentally or at least verified, but for some recently added entries the mature sequence 
have been predicted by regarding homologues in related organisms [Berzikov et al., 2005]. 
However, a great part of these sequences has been validated afterwards.  Thus, the data of the 
miRNA registry can be applied as confirmed comparison material for evaluation purposes. On 
the ftp server, there are several files of the databases provided for download. The 
‘miRNA.dat’ file contains all relevant information that is necessary for evaluation of a 
‘mature miRNA prediction program’: 
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• The precursor’s primary sequence 
• The position of mature miRNA within the precursor sequence 

I stored all the mature positions together with the unique precursor ID in a hashtable, so the 
predicted positions can be compared immediately to the genuine ones during the evaluation 
process. 
  

Comparison details 
When evaluating a particular method, one has to define a precise measure of quality of the 
results. In case of ‘In-Silico-Dicer’ there is the predicted miRNA position within the given 
precursor and the genuine position of the mature miRNA, which is derived from the validated 
data from the miRNAregistry. I defined the ‘overlap’ of these two miRNA positions as:  
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Figure 11: Illustration of the evaluation principle: Given a miRNA precursor (black, hairpin
shaped), predict the position of putative miRNA (yellow sequence). Get the genuine position of
mature miRNA within this precursor (green sequence) from the miRNAregistry. Compute the
overlap, where overlap is defined as the length of the sequence the mature miRNA shares (red
sequence). 

The calculation of the overlap also works for all possible cases: (A) the predicted and the genuine 
sequence are not of the same length and (B) the predicted sequence is not are the same stem site, so
there is no overlap at all.  In case (B) the overlap will be negative. 
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4.3.2 Results 
At the moment there are 35 miRNA precursor families known throughout the animal 
kingdom. In order to cover a broad spectrum of miRNAs and to get a representative result, I 
picked out one single precursor (always the first one) of each miRNA family. To evaluate the 
large amount of data automatically, I implemented an additional class that starts the 
application without the Graphical User Interface. All approaches are applied to the input data 
with their default settings for all implemented algorithms. The predicted and genuine 
positions of mature miRNA are output on the console in tabular form. On the basis of theses 
tables, the overlap was computed. 

Intrinsic Plot 
 
The run of the simple intrinsic approach, without aligning the particular precursor to any 
other, provides only partially satisfying results: the average overlap of all 35 miRNA 
predictions is 4%. This result includes all 19 putative miRNA positions which were predicted 
on the wrong stem side of the precursor, resulting in a negative overlap. Consequently, 16 out 
of the 35 examples have been predicted on the correct strand.  In the bar plot in figure 12 the 
family representatives are sorted according to their overlap with the genuine mature position. 
One may speculate, that the prediction is better in several precursor families because these 
families follow a typical secondary structure scheme, which was the basis of the applied 
scoring algorithm. Maybe, the secondary structure of precursors is more diverse than 
expected. For those representatives, predicted on the correct strand, the overlap is never less 
than 11%. 34% of the evaluated data has an overlap above 50%, and even 22% reach an 
overlap of nearly 80%, which means a deviation from the genuine mature miRNA position of 
less than 2 nt. Only one of the test precursors, namely dme-mir-10, yields a 100% correct 
prediction. One can read off the amount of prediction success in percent of the evaluated data 
for all overlap values from the line plot in figure 13. In this diagram, a plateau between 
overlaps -25% and 15% attracts attention. This percentage derivation corresponds to an 
absolute derivation of about 16-34 nt. This is approximately the distance where the stem loop 
is expected. So, from this illustration, one can assume, that the simple intrinsic approach at 
least did not predict any mature miRNA on the terminal loop. 
A very relevant fact to keep in mind for this approach is that the scoring function is just one 
step in a complete system of miRNA prediction which has been isolated to fit in this 
application. Wang et al. [2005] primarily executed several filter methods on their data set to 
reduce the amount of potential mature miRNAs. I ignored all these filters to simplify the 
procedure to its essence. Moreover, the authors developed their algorithm for the prediction of 
A.thaliana miRNAs, which may be very organism specific. In a review paper [Chen, 2005] it 
is stated that miRNA biogenesis is quite similar in A.thaliana and most animals, so there was 
the assumption, the method of Wang et al. may be also applicable also to the selected test set 
of metazoa. Interestingly, the prediction method was even less successful when evaluating 
with a set of A.thaliana precursors (data not shown) but this result may be due to the missing 
filter steps.   
As a conclusion to this method, one can say that it is not too bad, considering the fact that this 
approach requires no additional information. Only by applying a scoring formula to the 
nucleotide and secondary structure sequence, the prediction of ‘In-Silico-Dicer’ reaches a 
significantly higher credibility than randomly selected mature miRNA positions. The 54% of 
totally wrongly predicted positions may lead to the assumption that many more diverse 
structural features of the precursor must be taken into account. Maybe, with increasing 
knowledge on precursor processing, one can develop a more complex scoring formula which 
includes these features.  
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Figure 12: Intrinsic Approach (simple). The precursor families are ranked according to their reached 
overlap. 16 out of 35 selected examples (>45%) have been predicted on the correct stem side (positive 
overlap).  8 out of them (>22%) reached an overlap of nearly 80% which means < 2 nt deviation from the 
genuine position.  
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Figure 13: Intrinsic Approach (simple). The amount of successfully predicted miRNAs (in %) is mapped 
against the reached overlap. This means 100% of the evaluated miRNAs reached an overlap with their 
genuine position higher than -55%, 45% reached an overlap of 10% and only 1 miRNA (~2.9%)  reached 
the overlap maximum of 100%.  
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Profiles – Intrinsic & Extrinsic 
 
In order to yield comparable results, I used the same test set of representative precursors of 
every metazoan precursor family to evaluate the two similarity-based approaches: Intrinsic 
and Extrinsic Profiling. In these cases, the selection of comparable precursors is a variable 
which is considered to have a great influence on the results. The amount and grade of relation 
of these precursors can be regulated by varying the cut-off value for searching similar 
sequences. As a consequence, the evaluation of the two profiling approaches has to be 
performed referring to the cut-off value. Before evaluating, I tried some cut-off values and 
determined that there is a relatively small interval in the cut-off range where the amount of 
close related precursors suddenly alters greatly. This interval is between cut-offs 85 and 120, 
cut-offs lower than 85 return almost the whole database as similar precursors, while a cut-off 
higher than 120 usually returns the given precursor itself. So, consequently I restricted the 
evaluation to this interval. I chose a step-size of 5 to yield relatively exact and differentiated 
values.   

Intrinsic profile 
In the line plot in Figure 14, the resulting percentage of the whole test set of precursors (35 
precursors) are mapped. The precursor reached an overlap higher than the according value on 
the x-axis. Every data-sequence (one line) refers to a specific cut-off value between 85 and 
120. Additionally I added the success curve of the intrinsic plot from Figure 13 for 
comparison purposes. This data-sequence is mostly lower than all other lines referring to the 
extended intrinsic prediction approach, which means the average rate of overlap is 
significantly higher in the proposed extension of Wang’s algorithm. Due to an alignment with 
similar precursor sequences, an average advancement in overlap to the genuine mature 
miRNA position of approximately 10% has been achieved. However, it is remarkable, that in 
the runs with minimal cut-off values (85, 90) no miRNA has been predicted with 100% 
overlap. With theses cut-off values up to 98 similar precursors were found throughout the 
database (data not shown), which may include also distantly related ones. One can assume 
from this result that an increasing amount of comparison precursors, yielded by a low cut-off, 
not always causes increasing prediction reliability. On the contrary, this may lead to an 
alignment with incomparable precursors, which consequently tampers the prediction. From 
this perception, one can learn the importance of the optimal cut-off adjustment. The arising 
question is: Is it possible to determine a universal cut-off optimum for all precursors? To 
answer this question, I compared the reached overlap precursor-family-wise for all cut-off 
steps. The bar plot in Figure 15 shows the stacked overlaps for each miRNA family (its 
representative precursor). From this diagram one can spot that in the minority of examples the 
overlap differs significantly according to the chosen cut-off value. Especially, there are very 
few predicted miRNAs whose overlap with their genuine position is positive for several cut-
offs and negative for the rest. In the majority of test precursors, the prediction (which means 
the % overlap) is either solely positive or solely negative. Furthermore, in most of these cases, 
the prediction success in one miRNA family remains the same for all selected cut-off values. 
As a conclusion to this diagram one can assume, that there is no comprehensive cut-off value 
for all miRNA families to be found. But this plot confirms the supposition that there are some 
families whose predicted mature miRNA position appears to be more reliable than others. 
Again mir-10, mir-192, mir-34, mir-9, mir-92 are ahead in this statistic, like in the intrinsic 
(single) approach, which is not surprising due to the fact, that this analysis refers to an 
extension of the single approach.     
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Plots for Extended Intrinsic Approach  

-1
00 -9

0

-8
0

-7
0

-6
0

-5
0

-4
0

-3
0

-2
0

-1
0 10 20 30 40 50 60 70 80 90 10
0

0

10

20

30

40

50

60

70

80

90

100
85 90 95 100 105 110 115 120 IN_plot

overlap (%)

qu
an

tit
y 

of
 p

re
cu

rs
or

s w
ith

 h
ig

he
r o

ve
rla

p 
(%

)

 
Figure 14: Extended Intrinsic Approach. The particular scored precursor has been aligned to the similar 
precursors derived according to the cut-off value. The amount of successfully predicted miRNAs (in %) is 
mapped against the reached overlap. The lines which refer to the different cut-offs are clustered in the 
plot.  The red dotted data-sequence is the curve derived from the intrinsic simple prediction method. 
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Figure 15: Extended Intrinsic Approach. Overlaps derived from different cut-offs are shown in a stacked 
way for each single precursor family. As the overlap interval  200 (-100 % to 100%) the upper and lower 
bounds in this diagram are theoretically 800 and -800 because of the 8 cut-offs. 
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Plots for Extrinsic Approach  
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Figure 16: Extrinsic Approach. The particular precursor has been aligned to the similar precursors 
derived according to the cut-off value, than the prediction was made based on the conservation. The 
amount of successfully predicted miRNAs (in %) is mapped against the reached overlap. The red dotted 
data-sequence is the curve derived from intrinsic simple prediction method. 
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Figure 17: Extrinsic Profile. Overlaps derived from different cut-offs are shown in a stacked way for each 
single precursor family. As the overlap interval  is   200 (-100 % to 100%) the upper and lower bounds in 
this diagram are theoretically 800 and -800 because of the 8 cut-offs. 
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Extrinsic Profile 
To evaluate the third prediction method I applied the same test set of representative precursors 
again. The extrinsic miRNA prediction approach described in Section 4.1.2 was outstandingly 
successful on the chosen data.  In Figure 16 a line plot, similar to Figure 14, is shown. The x-
axis represents the degree of overlap in %. On the y-axis, the percentage of miRNA 
precursors that reached a certain degree of overlap is registered. Like in Figure 14 I added the 
overlap curve of the intrinsic (simple) prediction method; the advancement in prediction 
reliability is remarkable: regarding all cut-offs, at least 50% of the miRNAs have been 
predicted with an overlap of 30%. Overlaps of 80% were reached by nearly 80% of the 
predicted miRNAs using the lower cut-off values (85, 90, 95, 100) while only about 50% of 
the miRNAs reached this overlap level with cut-offs higher than 105. This noticeable 
difference shows, that the cut-off and consequently the amount of comparison-precursors in 
the extrinsic approach has a different impact on the prediction result than in the intrinsic 
approach. The extended intrinsic method can return a misleading prediction on a too low cut-
off causing many similar precursors. On the contrary, the extrinsic method appears to yield 
better results when applying these low cut-off values and yields decreasing overlaps with 
increasing cut-offs. This may be due to the fact that the extrinsic prediction method is mainly 
based on the conservation which depends only on the alignment, whereas the intrinsic method 
basically depends on the scoring, even if it is aligned afterwards. When there are many 
comparison precursors, the conservation can be calculated more reliably. This does not imply 
that an alignment to nearly all precursors of the whole database will return the best result, 
from Figure 16 one could assume a cut-off around 95  may be the best choice for this dataset. 
Again, I questioned if there exists one ultimate cut-off for the extrinsic prediction of mature 
miRNA in general, which may be possible regarding the success curves in Figure 16. From 
the plot in Figure 17, however, this appears unlikely. In most cases, this plot shows the same 
features as the comparable intrinsic one (Figure 15): the percent overlap per precursor is 
either solely positive or solely negative and mostly the overlap values are similar within one 
example – there are some exceptions like mir-1, mir-8 and mir-101 for instance. Regarding 
this illustration one can again obtain the high prediction reliability of this approach: some 
miRNAs, the miRNAs which appear to be easily predictable with the intrinsic approach, show 
relatively good results also here and additionally there are several miRNAs whose prediction 
success increased remarkably. I observed that these precursors are mostly assigned to have 
many relatives in other organisms: one exemplary miRNA family here is let-7, whose 
prediction success more than doubled in comparison to the extended intrinsic approach. 
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5 Discussion 
 
In this thesis, I presented some ideas to solve the problem of mature miRNA prediction and 
implemented an application, which deploys these ideas.  I evaluated the applied approaches 
and  compared the results. 
The intrinsic approach, which scores the precursor by means of primary and secondary 
structure was the most ambitious attempt because we do not have any more information than 
the precursor provides. The idea was to reconstruct the recognition and the cleavage process 
mediated by the RNase-III-type processing enzymes. Due to a lack of biological experience I 
build in a piece of an already existing algorithm, which however is very specific for 
Arabidopsis. All in all, this pure approach has not been truly successful when applying it to 
the chosen test set of animal precursors, but nevertheless, there were some good predictions. 
These lead to the conclusion that the prediction success is probably just a question of how 
much we known about the precursor’s properties and consequently how precise the scoring 
formula can be defined. Maybe, in the future, one can develop the ultimate scoring algorithm 
applicable to miRNAs of all families. In order to improve the intrinsic method despite the 
existing scoring formula, I extended this approach by using related precursor sequences. Due 
to this additional alignment step, a noticeable prediction advance could be observed; the 
average overlap result was at least 10% higher than before. Dependent on the amount of 
precursors to compare, even better results can be achieved. I assumed the cut-off for searching 
similar sequences has a great influence on the prediction and therefore I evaluated with 
several adjustments in a relevant interval. High cut-off values, which yield a little set of 
mostly closely related precursors, appear to be favourable here. The reason may be that the 
results of the scoring are blurred by aligning the precursor to others. Although the extended 
intrinsic strategy has not been very reliable in all cases, one can obtain some useful 
information from the evaluation for developing a similar approach. 
Furthermore, I considered a totally different idea to overcome the challenge to predict mature 
miRNA: the extrinsic approach. This one is based on a multiple alignment with related 
precursors and regards the conservation among them. In comparison to the previous 
approaches its prediction was significantly more reliable. Especially good results have been 
achieved with lower cut-off values; which indicates that a lot of comparison precursors 
contribute to the prediction credibleness in this case. On account of this oppositional outcome 
compared to the intrinsic strategy, it might be a suggestive consideration to somehow 
combine these two approaches.  Probably, this will compensate the particular disadvantages 
of intrinsic and extrinsic miRNA prediction. 
Due to the highly flexible implementation, ‘In-Silico-Dicer’ is open to integrate new 
algorithms which may increase the reliability of the prediction. There are already some new 
ideas to improve the application: one could optimize the calculation of conservation by 
regarding the perfect complementary on the 5’ end of the mature miRNA to the target. 
Maybe, the sequence between nt 2-7 appears to be even higher conserved than the rest of the 
miRNA sequence is. By improving the algorithms, the application also becomes more 
effective and I am also going to make it applicable for high-throughput computation.  
Certainly, the development phase of ‘In-Silico-Dicer’ is not completed yet.  
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6 Conclusion & Future Prospects 
 
The astonishing diversity of regulatory pathways directed by small RNAs has been discovered 
through a combination of genetic and biochemical approaches. However, to completely 
understand the whole dimension of this complex system, we have to apply bioinformatical 
methods, too. Recent researches, which combine these two approaches, have shown that the 
total number of miRNAs in humans is much larger than previously expected [Bentwich et al., 
2005]. With their bioinformatic-experimental prediction method the authors nearly doubled 
the current number of sequenced human miRNAs. However, to confirm new miRNAs, which 
appear to have no related ones in other primates for instance, they had to deploy expendable 
microarray analyses and sequence-directed cloning. If we were able to develop a reliable fully 
computational prediction method for miRNAs and their targets, the enlightenment of RNA 
mediated gene regulation would be considerably more seizable. Several uncertainties 
associated with miRNA predictions include: (1) the orientation of the transcript (plus or minus 
strand) for a genomic location encoding hairpin sequence, (2) the position of the processing 
sites  within the hairpin structure and (3) the determination of which of the paired segments of 
the hairpin will constitute the mature miRNA [Aravin et al., 2005]. There already exist several 
programs which yield very satisfying results in genome-wide precursor prediction and 
searching for possible miRNA targets but relatively less effort has been spend to predict the 
processing from pri/pre-miRNA to the mature sequence. Within the time of my bachelor 
thesis I tried to develop approaches to overcome the missing link in this chain of 
computationally reconstructing the miRNA pathway. Especially regarding the proposed 
intrinsic approach one can conclude that the processing by several enzymes requires further 
investigation; to transcribe this special step in a reliable algorithm will be a great challenge in 
the future.  
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8 Appendix 
 

FASTA Format 
• This format contains a one line header followed by lines of sequence data. 
• Sequences in fasta formatted files are preceded by a line starting with a “>” symbol. 
• The first word on this line is the name of the sequence. The rest of the line is a 

description of the sequence 
 

Term Entry Name (ID) Accession  Organism Family Sequence Type 
e.g. cel-let-7 MI0000001 Caenorhabditis 

elegans 
let-7 stem-loop 

 
• The remaining lines contain the sequence itself. 
• Blank lines in a FASTA-file are ignored, and so are spaces or other gap 

symbols(dashes, underscores, periods) in s sequence. 
• FASTA-files containing multiple sequences are just the same, with one sequence 

after another. This format is called multi-FASTA 
 

>cel-let-7 MI0000001 Caenorhabditis elegans let-7 stem-loop 
UACACUGUGGAUCCGGUGAGGUAGUAGGUUGUAUAGUUUGGAAUAUUACCACCGGUGAAC 
UAUGCAAUUUUCUACCUUACCGGAGACAGAACUCUUCGA 
  
 

ClustalW, used Output Format 
 
For the given multi-FASTA input: 
>ssc-let-7i MI0002447 Sus scrofa let-7i stem-loop 
CUGGCUGAGGUAGUAGUUUGUGCUGUUGGUCGGGUUGUGACAUUGCCCGCUGUGGAGAUAACUGCGCAAGCUACU
GCCUUGCUAG 
>rno-let-7i MI0000835 Rattus norvegicus let-7i stem-loop 
CUGGCUGAGGUAGUAGUUUGUGCUGUUGGUCGGGUUGUGACAUUGCCCGCUGUGGAGAUAACUGCGCAAGCUACU
GCCUUGCUAG 
>mmu-let-7i MI0000138 Mus musculus let-7i stem-loop 
CUGGCUGAGGUAGUAGUUUGUGCUGUUGGUCGGGUUGUGACAUUGCCCGCUGUGGAGAUAACUGCGCAAGCUACU
GCCUUGCUAG 
 
The multi-FASTA output format looks like that: 
>ssc-let-7i 
---------------------------------------------------CUGGCUGAG 
GUAGUAGUUUGUGCUGUUGGUC-GGGUU--GUGACAUUG--CCCGCUGUGGAG--AUAAC 
UGCGCAAGCUACUGCCUUGCUAG---------------------- 
>rno-let-7i 
---------------------------------------------------CUGGCUGAG 
GUAGUAGUUUGUGCUGUUGGUC-GGGUU--GUGACAUUG--CCCGCUGUGGAG--AUAAC 
UGCGCAAGCUACUGCCUUGCUAG---------------------- 
>mmu-let-7i 
---------------------------------------------------CUGGCUGAG 
GUAGUAGUUUGUGCUGUUGGUC-GGGUU--GUGACAUUG--CCCGCUGUGGAG--AUAAC 
UGCGCAAGCUACUGCCUUGCUAG---------------------- 
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